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MULTIVARTATE REGRESSION — AN TNTEEPLAY RETWEEMN
COMPUTATIONAL ASPECTS AND EXPERIMENT DESTGH

The «classical regression parameter gsi-imation probles 13
congidered, It Is shown Lhat for a multiwarlate regression
large computational savipngs can be galned, LT we lmpose
certain, but nol severes, restrictlons on a regression functlon
and on & experiment design. The proposed aspproach exploltes
properties of Eronecker’'s product of matrices,

1. THTRODUCTION

In 4Lhis paper the classical regression parasclers eatimation
problem im cons ] dered from & view=point ol real=-1ifre
cosputational
abilitiea in conjunction with experiment design possibilitles. Ao
approach is proposed, which allows ta reduce compulational burden In
sulimating multivariable regression parameters by exploiting a spocial
structura of the ipformation matrlx, resulting when a certain class of
axporiment desighs can be applied.

Our results are motivated by the following conglderating. Suppose
Lhat aalimated rogresslon is of Lhe Torm:

EYtxi=a’ [{x2 €1,13
ghere x & B is vector of independent variables, © - BFa—k™ i3 a vector
of knomn linearily independent Punctlons, while a = BT 15 m veclor ol
unknown parasetiers to be sgtimated. The eslimation. is based on
uncorrelated measurcments Hx:.)' '!(x“:,...,‘r(:-:H} performed at  polnls
xI,xt.,..,x . IL Iz a stapdard plece of the regression Lheory (e ..

H
[317 that Lhe least sgquares estlsate (LSE} & of the vector a = E™ im Lhe
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wolution of Lthe norsal equations
H*a = p 1,22

whors m = m infarmation matrix

- H
B o= Ffix 30 tx 3 €1.43
i n
fEl
while
- H
po=Trix Y. Y(x ci.db
nag n "
Letl s congtder computational agpects af 1.2, In Lhe

myltivariable case Lhe most commn cholge of compopsats in FOx) IS
L L4 .
B N R P NI L 2Pl SE T U PR - €1.493
i
ghere BT, J=1,2....,k are chosan fupctions of one variable de.g.

(R 4] irs
R R ariE

polynosials of Lrigonometrlic functionsy, while x X
components of x. Usually, sll elements €1.532 enter 1lnto ri{x}, =lnoe
Lhere is no a prlorl knowledge, which of Lhem are of lsportance. Thisg
jeads Lo the necessity of solviug €1.22 with m = k' equations

The approach proposed Ln thiz paper is applicahle Lo 2 Large Chub
not. arbitrary?) class of Fixd and Lo a lapps (but also nob srbitraryl
class of experiment designs, leading to an easentisl  coduclion  of
computational burden. pegtricticns ilmposed on C{x) and an experimental
design are nf & structural Lype only, @8 it will be shown in section 2.
In mection 3 we present a computational algorithm, while in section 4

its sdvanteges are discussed.

P, ASEUMPT IS

Ve need a slight change of notatlon, namely Ly ¥, gm 1,21
we denote P dimensional subvector .o the weclor of  independent
varlables x & R inot necesariily one dimenslonal az in Section 13, We
restrict our attenbion Lo a large class of the regrossion functlons,

wohich can be expressed as:
-

roxy = [o] g o=t €2.13

[ !

T m
&

where g + R'— R, Q=12 ...,r are vectors of the lineacilly
L

r

indepondent fupctions defined on A compact  SeLe X g 'In ¢2.12 =]
donutes r = fold Kronecker's product. We recall {see [21) that Tor .'I||:-clz
and I =K mairices A, B their Kroneker’s product c o= asbBois 1;"‘."‘1:"‘

®
matrix, which is composed ITom Lhe blocks a“vﬁ, R T
J=1 2, .- ,12. Thus, [ix} 18 m = B <M “,.. .; = dimengional veotor and
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the typloal alpment of [(x? 1= of Lhe form

.
3 gt
T’T‘u‘*l?: I PEIRRERLA €337
hEg
L, Sk %
wheere i 3 ig l=-th component pf the veclor :L(.:-r. ¥,
Goneerning measurements, we aszume that they are made in the sel
Kk = K= .:-::Iir. In order Lo define an admissible expariment desilgn

AT e choose r selg of not necesserily dismtinct  polnts
4 riL I ] ¥
V_‘gth".x:”,...,xn“}. #' e X, Jmi,2, . ..,0 imi,d, ..., and an
alptasibie experiment design & < X 1= defined as e = F =N .- =N -
r
FThus o Lypiloal meaguresent. polnl iz of the formd
iy _ 421 irt 14k -y
¥, . PR 4 X, & c2,. 32
Lo Joxie
r 1

while Lheir total number H-nt-nz-...-n. The class of all admimsible.

s
practical applications. In particular, degigna from X are similar in

-
Signg LM denoted by X. IL seems that & is gurfficiently rich Cor many

structure to deslgns propoesed 1o el
For compactness ol rurther rormulas 3. will b convenient to
identiry wach wiperiment deslgn = < LN with a certaln discrete AR B

{‘tx"") on ¥ 1= attached by putting equal masses pj“ - 1/n‘ to every
point :-r.‘lIL S, - - PR PO iwf 2, ., Then, the product seasura Fi{x) on
¥, defined by r o

Fedmden £ T 2. 4%
i attached to the corresponding sel » & % . Weasure C2.47 has a5 Lhe

set. of support points with Lhe squal masses attached to them. The set of

all meadures (.42 gorresponding Lo » & % will be denoted by -

3, COMPLUTATIONAL ALGORT THH
The following lemma aliows Lo recognlze & gtructure of M.

Lomma 1
For ecvery £ = =11 and fi{x? of the form ©2.12, information matrix H, is of

t.he Torm!
.
b =0 H 312
[
where o x = matrices H , =i ,2,... ., are dalined by
.
m =g %™ ;fcx“':-:wx“‘:- €3, 33
A
o)
Let am denote &'° 0= e S P L RPN wilth obvious
identirications 2" = %' and 7' m x. In recursive relationships

helow, we shall also mest '®'  yhat means - by convenllen = that &
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vector Function ?_‘.*cx_""”_} is In fact a vector, which does not depend on
P i, 2,....0. In much a case ®We xhall write 2: insteoad of Z‘fk‘a;).

L mma, 0

Ir all matrlees M iwt 2,,,.,7r are nobslngular, then bhe solution a
L
af £1.27 can be obtained from the following recursive relationships:

Py ud Z PR e ™ e (™, ker,r-1,. .., 1 (3,30
%
1S
wh e N . N
h“'cx"*J-H;‘igkfx‘* 1ox e £3. 43
T Taeyinry xm %' 7E ¥ [

Then, iteratlng 3.6 we gek a = 2 for k=1.m

Lemma % containg a prototype of our algorithm. It resains to
express the above forsulas in Lhe Lerms of available data, To Lhis end,

let us pobe Lhal al emeasurement polnts 'x:]:.lx.ljz:""x.jlr}' .jl-!..z...._.rl‘_.
1 z r
1=1,2,...,r formala €3, 3) reads as;
n,
23] v Lkeds '
z = 5 ath #h €3, 73
B T T N I P
j=1
Iror JII"I_;Z_.....rll amd k=1 2,...,.k-1, while ker r-1,....,1, In €3.7) we
inLtroduced the following notallons: ]
?.rk-u - Zlkr“'l:-:”' x-::'.s xrka}
.J’J*. Sy ‘j:. 'I:- k
Treid (W] ir
2 = Y(x s X 3
"1-"'2' 'Jr "II I.
Pk T ik Pk 1 thet
- g T
hlj" I ‘.xJk ?m I‘i'IL £, xJk ¥

4. COMMENTS

Before discussing computational savings of Lhe above algorithm in
comparison with the erdinary least squaces, soae commenbs are ln place.

1. The orthogonal regression anod ardinary L35 can be Iabedied into
the proposed scheme, ov Lhe sxirems special cose.

£, Hoving o iyplcal libray subrouwtine foer mulidiresponse leasi
sguares estimation (¢ (5 ensy to implensnt our agproach by nesting
this subreuling Enfo reslep loog of o progromme.

T, Orne can nolice thet @f kh-th Lteraticon of cur algorithm we houve
a set of "portial™ regression (n pur dispgosal. In this respect,
sur  agproach posseses o commen feaiures with an ddent o ficalfen
procedurs proposed cn (). Detadiled analysis of similariiies ond
Aif ferences of Lhsss lun epproaches (s oulside the scape of this
ErR .

Comparing BPLSA and the classical least squares algorithm (CLSAY,
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piven by €1.33=(1.42, ®e Can dlgtidnguish 1L¥0 sources of compubatlional
gavings, The losh ol then comes Crom reduction in sire of llnear
equations, which haye Lo ba galved In BPLEA and OLEA.
The mecond source of computational savings L= in Torming matrix H,

and p in €1.23, Lat us swsume Lhat Lhe veelors .;lc::c;""} o LA m
fml 2, ..., are glven and HIFH,-...H}_I Then 1t can'be shown Lhat Lhe
ratio C(number of operations in CLSA3-{number of operatienz in BFLEAY — L
ror M+ . Thus, for & large gample =ize, redudlion ol compubalional
burden is of the same arder as tLhe pusber of estimated paramelers, This
poduct-ln  Lnereases whon Lhe number of estimaled paramsters Locreases.
For exemple, LI wo have 4 Lpdependent. variables %" ar and third order
polynonlals are pivted (p=4d, thon Lhe reductlon is of order 254, We
ahnll mnot prove the above Cacts abeut. complexily, slnoe proofs ave casy
bt CumbErsane.
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YHOICHEPHAA PETPECCHT - Cafsh MEFD BUMHCIHT UIRHHMM  ACIERTAMA
W LIAMMPOBAHMEN SHCOEFHME {103

B padoTe TROOMAT PR HORTCA LnacomecKrs BONDOCH DeTReCoNDEHITd
QUEAMBAI DApaHaTR0s. NokpIupaeToA, 9T LI T toTOMATHEE Derpes
LODTHTAATEN OORBENA WROHOMLE pradonaet, B npeiariaemcd [1€aBid athe]

HNEpoiEayETea cRolcTER NpodaRpRRaHny RATPHL Kponeiaps.
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