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EXPERIMENTAL DESIGNS ON A
HYPERCUBE

Ewaryst Rafajlowicz® Wojciech Myszka'

Abstract

In.the paper the computstional algorithm for fuding optimum experi-
mentsl design is proposed. The algorithn is based on authors’ recent remut
mdicating that for Hoel's type regression on a hypercube and for & large class
of optimality criterions one can find the optimum design which is a product of
designs for partial regressions. Consequently, the Wynn-Fedorov algorithm
is spplied to find optimal designs for partial regressions and then they are
composed into the optimal design for all variables, It is also shown that the
upper bound for the number of support points in the design generated by the

algorithm is essentially smaller than provided by the commonly wsed upper
bound.

1 INTRODUCTION

We consider the opiimum experimental design problem for regression function
EY(z) = a” f(z} in the classical setting (see, e.g., Fedorov (1072), Pagman (1986),
Silvey (1980}]. Above, @ € R™ is the column vector of unknown parameters,
while f{z) is {he vector of prescribed fanctions, which are continuous and linearly
Independent over a compact set X € R, For simplicity we assume var(¥ (z)) = L.
Our aim is o chooee an experimental design, which is from the class (X of all
probability measures on X including all discrete measures, This choice is based on
the information matrix

M) = [ f(x)17(=)¢(d), (1)

a8 well as on an optimality criterion ${M(£) m), which is a real valued function
of the information matrix M{¢) and its dimension m.
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Every design £ € B(X) such that

sup B(M(¢);m) = B(M(é); m) (®)
1=:1
ie called @ - optimum. The problem (2) will be further called (&, m, 7, X} optimum
experimental design problem.
Numerical algorithms for generating a sequence §,, n=1,2,... convergent to
{;‘ have been proposed by Wynn (1870}, Fedorov (1972), Wu {19?3} Wu and Wynn
(1678} and Atwood (1678). Available algorithms are summarized in Silvey (1080)
and Pazman (1086), where also bibliography on generating exact N—peint design
can also be found. Here we concentrate our attention on generating the so called
continuons & - oplimum designs, which approximate N-point designs when ¥ is
large.
Roughly speaking, existing algorithms can be classified as follows.

I Algorithms operating in X, which generate both support points and weights
of a design. This class of methods is based on ideas of Wynn and Fedorov.

I Methode updating only weights of a design, which is supported in a finite
number of prescribed points (see, e.g. Pasman [1986) Chapter V for their
description).

In practice a set of support poiuts used by the algorithms of claea 11 is iden-
tified by a method from class I. For this reasocn we concentrate our attention on
improvements of algorithms of type L In order to simplify further references we
shortly describe euch an algorithm for differentiable and concave global optimality
criterion. Let F(M;m) be an m x m matrix with elements diL—"'“JH where my,; are

elements of M. Define
diz; M,m) = f* (2} F(M;m)f(z), (3
and let & € E(X) be an arbitrary starting design with M{&) nonsingular.
Let £, € B(X) be a design at n-th iteration. Then generalised algorithm of
Wynn and Fedorov, further denoted by AW EF($ m, f X), runs as follows (see

Pazman (1986) page 157).
Al the (n+41) - 8t step

Eugr = (1 = ap )by + aab{za} {4
where £(z,) is the measure lumped at x;,, which is defined by
:gEd[z;M £),m) = d(z.; M(E.),m). {5
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The sequence of numbers a,, n=1,2,... is such that

ag € {D: l:l:l
Yok @ = 00, {6)
lima, = Q,

or is is chosen 8o a8 $o maximise the function
(M{(1 - a)f, + ab(za)}; m) @)

with respect to a € [0, 1).

Sufficient conditions for convergence of this algorithm can be found in Pagman
(1986) pages 167-161.

The most difficult and time consuniing step in AW F(®,m, £, X) is maxiniiza-
tion (5). This step usually requires bo use an iterative procedure for finding the
global maximum of d(z; M(£,),m) constrained 4o X. As is known, it is one of
the most difficult tasks of the numerical analysis and its difficully grows nonlin-
early with the growih of dimension X. These facts motivate our study, which
iz directed fo overcoming difficuities of multidimensional optimization by decom-
posing (2) into 3 number of experimental design problems for partial regression
functions.

This approach is feasible for sufficiently broad clase of criterions and regression
functions on a hypercube, as it will be indicated in the next section, using results
from Rafajlowics and Mysska (1988). In section 3 the proposed algorithm is de
acribed, while in section 4 bounds for a number of support points in the optimal
design are derived.

2 PRELIMINARIES

We consider the regression funclion EY () = o7 f{z) of a special structure, which
was introduced by Hoel (1965) for two independent variables. Namely, the column
vector f(z) of continuous and linearly independent functions on a compact set X
ig of the form:

f(=) = 9:(=(1)) ® B(z(2)) @ - ® go(a(r))2 ® a(2(i)), (8)

where 2{1), ¥ = 1,2,... r are subveciors of the vector z. Furihermore, every
z(i) € X, where X; is compact set and X = X; x X; x --- x X,. Column vectors
#:(z{¢)) of continuous and linearly independent functions are defined on X; with
values in B™. By @ and & we denote Kroneckers or the direct product of matrices
or vectors (see, e.g., Marcus and Minc (1064), Lankaster (1068), Graham (1081)
for definition). Now a € R™ denotes the vector of unknown parameters with
m= 12, m; elementa.
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In order to indicate that the class of regression functions spanned by flz) of
the form (B} is very large we consider two examples.

Example 2.1 Let g;{z(1)) = |1,z(s)}7; 1 = 1,2,3 where z{i) € X; C R. Then,

EY (z) = a, + a22(2) 4+ ay2(1) + ag2(1)=(2) + 652(3)+ (0)
+aex(2)2(3) + ar2(1)2(3) + aez{1)2(2)2(3). /

Let us note that we listed parameters a;, 1 = 1,2,...,8 in the same order as
elements of f{z).

EIA]‘HPIE 2.2 Let §‘1{I“]] = lI- I“}]r Fﬂ{ztzn = |1155n{${2”:miz[2}}!r1
z(1) € {0,2x], +=1,2. In this case

EY(2) = a; + gz 5in(2(2)) + o coa{=(2)) + ays{1)+ (10)
+agz{1)8in(2(2)) + mez{1) coaz(2)).

When part of independent variables is fixed at prescribed levels z(1) = 2*(1),
(2} = =*(2), ...,z(s) = =*(4), say, then one may consider aT_."(r} a8 a regreagion
function of z(s 4 1),...,2(r), spanned by g;(=(s)), i = (s + 1),..

Such a function is ﬁm‘.her called a partial regression fu.uctmn

The reader may also consult Kasprzak and Lyzik (1074), where the methodal-
ogy of step-by-gtep model building is proposed and illusirated by many examples
from different disciplines,

Note that the orthogonal projection of the graph of the function a” f(z) onto X,
is of the form P g;(#(5)}). Thus, one can choose suitable base funciions camtttutm*

gi(z(t)) by looking at m'thogoual projections of the data and following ideas of
projection pursnit regression.

Our main interest in this paper is to propose an efficient numerical algorithm
for solving the problem (1), (2) for regression functions spanned by f(z) of the
form (8)., We confine our altention o the design optimality criterions for which
the following conditions hold,

Al) ¢ is concave and differentiable in 5+, which is the subset of non-
singular matrices in S={M(¢): ¢ € E.

Let F{M;m) be an mxm matrix with elements %ﬂ"h where my; are elements

of M.
AZ) The matrix function F{M;m) is defined on S* and for every c >
one ean find 0 < K, < co so that forevery M, M c {M € 5 : ¢(M;m) <

¢} A
[[F(M;m) — F(M:;m)|| < K.| M - M], (1]

where || || denotes the matrix norm.
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Discussion of conditions Al), A2) can be fonnd in Pasman (1986) pages 158-
161. They are used to ensure convergence of the Wynn-Fedorov algorithm and
hold for a large clasa of optimality criterions. The next conditions are amewhat
more restrictive but they allow to gplit the design problem into lower dimengional
subproblems of finding designs in the sets B{X;) of all probability measures on X;.
Note that the product measures

¢(de) = 11 £0(dx(s)), €9 € B(X;) (12)

form a subset of B(X), denoted by BII. Elements of BII are farther called product
type experimental designs. We also need the following algebraic results: for every
EcEIl

M) = @ MI(£0), (13)
where, for £11 € B(X;),
MO(EN [ a(z(i))f (266 (da(i)). (14

Equation (13) can be directly verified using well known properties of Kro-
necker's product (see, e.g., Lankaster (1669)). This equality motivates our as-
sumpkion,

A3) If M = @, MY, then
F{M;m) = @ F( M1, glid) {15)
=1

where M, M) are m x m and ml?! x m!) matrices, respectively, and
m = [T, mil,

Taking (13) into account, one can express assumption A3) as follows, We
consider criterion functions with gradients factorizable (in the Kronecker sense)
for all product type experimental designa.

Cur Jagt assmmption iz that

A4) F(M;m)is nonnegative definite matrix for all mxm matrices M ¢ 5+
and every m=1,2,....

The following examples shows that A3), A4) hold for many commonly used
optimality criterions (see, e.g., Fedorov (1982), Pasman (1986), Silvey (1980) for
definitions and formulas for gradients).
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D - optimality criterion. For M € 5t, ®(M;m) = Indet{M), where det( )
denotes the determinant, while F(M;m) = M~ Thus, A3} foliows from
the known fact that for nonsingular matrices 4, B we have

(AeBy'=4"'g B, {16]
see, e.g., Lankaster (1969).
L, — optimality. For positive integer p and M € §4,

B(Mim) = ~[Li{M-7)]}
with the gradient
F(M;m) = m~ 3 [br( M) 55 -ttt (a7
Now A3} follows from {16) and the equality
@ M2 = [T wr[MU]2).
=1 (e
Let ve note that L, - class containe the following criteria:
A - oplimality for p = 1,
I} - oplimality for p — 0+,
E - optimality for p —+ oo,

Q-optimality. For M € §* &(M;m) = — [ fT(2)M~ f(x)dz and F(M;m) =
M @, GiM™ where G2 [y, gil z(1})g7 (21} )dz(x). Now A3) follows from
the following property

(A@ BlC® D)= ACa& BD, [18)
valid for matrices of appropriate dimensions.

Extrapolation at a peint., Let z € X be the poiot at which prediction wish
the largest accuracy is desired and let z = [2(1), 2(2), ..., 2{r)]T be its parti-
tion z(i) € X,,1 = 1,2,...,r. Then, ®({M,m) = —f7{z)M ' f(z} with the
gradient

PM;m) = M~ @ g2} ()M

and the verification of A3) is the same as above,
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L—optimality. The last two examples suggest that A3) holds also for L - opti-

~ malily criterion ®(M;m) = —tr{M~1W) if the user defined weight matrix
W ig factorisable as follows W = @1, W(i), where W(i) are nonnegative
definite m' x ml? matrices. In this case F(M;m) = M~ @, W({i)M~
and A3) follows from (16) and (18).

The computational algorithm proposed in the next section is based on the
following result proved in Rafajlowics and Mysska (1088).

Theorem 1 Lzt the regression function be spanned by f(z) of the form (8). Con-
gider the problem (2) with the eriterion, for which A1), AS), AJ) hold. Denote by
W € B(X;) the optimum experimental designs for partial regressions spanned by
gi(z{s}), which are defined by
Bup (MM my) = (MW (EMNmg) i = 1,2, ... 7. (19)
SUIEE )
Then, for the whole regression, spanned by f(z) one can find (®,m,f, X) -
optimum ezperiment design £ € B(X) of the form |

) = ] £9(d(s)) 20

=] |

In other words, there exirts the oplimal design, which can be composed fram
optimal designe for all partial regressions.

3 COMPUTATIONAL ALGORITHM |

Theorem 1 suggests the following algorithm

Step 0. Choose the criterion & for which A1) - A4) hold. Ford = 1,2,...,r
perform steps 14,

Step 1. Define X; and g{=(i)). |
Step 2. Choose a starting point ¢ € B(X;) with MY (£ nonsingular,
Step 3. Execute AW F(®, mi, g, X,) according to (4),(5) and (6} or (7).
Step 4. Store the (near-joptimal design £ € B(X;) obtained in Step 3.

Step 5. Compose the (near-Joptimal design for the whole regresaion aceording to
(20).
L
The above algorithm has been implemented in FORTRAN 77 on IBM PC

compuiert by the present authors. Few remarks concerning implementation are !
in place. |

L




Remark 3.1 In the implementation X, are chosen to be user defined intervals,
while gi(£(s)) can be chosen from the following systems of functions:

a] the classical polynomials,
b) the Tachebyachew polynomials,
¢| the Legendre polynomials,
d) the Laguerre polynomials,
¢) the trigonometric system.

Nete that each partial regression can be spanned by its own system a), b1,
or e},

All the criterions listed in Section 2 are available for the Program wser, [t s
clear, that some combinations of critericns and regresaions are redundant, e.g., we
obtain the same partial design for polynomials a}, b}, ¢} with D-optimality crite
rion. However not all criterions are invariant bo ponsingular reparametrizations,

Remark 3.2 [p the implementation of Step 3 the following subtaske are invelve:

1. Global, one-dimensional optimigation, for finding the next paint 1o he adds’
bo the currently available design. It is performed in two steps, Namely
3 rough search on a uniform grid is made in order to locate the jnterva
containing the global maximum, then the goiden search method is applisd
to locate it with user's defined ACEUTACY,

L. In order to avoid designe supported iu boo MANY UnRecessary Doinks, the
following measures have been {aken.

{a) At each iteration of Wynn-Fedoroy algorithm we check the possibility
of improving current design by rejecting a point from its gupport. This
is done according to the known method described in Pagman {1P5R]
page 144, but we aliow bo mject a point even If it cap jead Lo mome
increase of the criterion funclion in a current fteration, This ccoures &
be an efficient tool in speeding up the algorithm.

(b} Before adding a point to the support of exiabing design we chack w)
it is possible to “glue” it with earlier added poinse. By this we mean thas
very close points are not distingnished {with nser's defined resclniion’
and their weights are added.

(c) Before performing Step 4 the user can remove points from the desigr,
The standard stopping rule is applied at Step 3. Tt is based on checking whethes

the optimality condition i fulfilled (with a specified accuracy) by currently avail
able design (see, e.g. Pasman {1986) Theorem (V.28}.
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Bemark 3.8 Design for pariial regressions, obtained at Step 8, are stored in the
form (z;(s), p;(6)),7 = L, 4,..., ;i = 1,2,...,r. Thus, the final step consists
of generating all possible tuples (z; (1), z;(2),...,2;(r)), and the corresponding
weights given by p;{1)p,(2)...p;,(r).

4 BOUNDS FOR THE NUMBER OF SUPPORT
POINTS

At a firei glance, one may think that the algorithm proposed in Section 3 generates
designe supporied in excessively large nomber of points. In fact the things are not
8o bad, Namely, we shall show {hat above sirategy of composing multidimengional
designe allows to reduce an upper bound for the cardinality of the optimal design
support in comparison o the known bound. As it is well known (see, e.g., Fedorov
{1982}), for every design £ € (X} one can find & design with the same information
matrix, which is lumped at a finite number of N points, say, and such that

m{m +1)
2
The above statement holde under the assumptions of Section 1, where m iz defined

as dima = dim f(z). Furthermore, if the optimality criterion is such that M{{)
lies on the boundary of the set {M(£): £ € B(X)}, then

m< N <N 1. (21)

m< N < ﬁ,&m. (22)
We remnark that inequalities in (21), (22) are sharp, i.e., for a general experi-
ment design problem examples are known where equalities hold.
Let us assume that all the assumptions of Theorem 1 hold, Denote by Lix)
the number of support points in the design problem (@, my, &, X:). Applying
inequalitiea {21}, (22) fo this problem we obbain, respectively

my < L(§) < L,{i) = -‘{—”‘;fﬂ +1, (23)
me < L) € 1) = Y, (24

Lei I depotes the nomber of support points in the design obfained at the
Step 5 of our algorithm. According to Remark 3.3 we obtain from (23} and (24),
respectively

m < L< L, =[] L{i), (25)




Table 1; Ratio g(k,r) = kx, defined by (27}, (28)

-

p] 3] 4 5] 6] 7] & @8[] 1o
1.45 | 1.0G | 0.88 | 0.785 | 0.726 | 0.666 | 0.650 | 0.637 | 0.621 |
1.73 | 0.90 | 0.64 | 0.520 | 0.454 | 0.413 | 0.388 | 0.366 | p.351
1.86 | 0.72 | 0.44 | 0,335 u.z?aln_us 0.223 | 0.208 | 0.197

1.93 | 0.56 | 0.30 | 0.215 | 0.170 | 0.145 | 0.120 | 0.118 | 0.110
2.00 | 0.16 | 0.05 | 0.010 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
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Table 2: Ratio §(k, r) = kx, defined by (27), (28)

— — y

2] 3] 4[] B[ 6] 7] 8] @] 10|
0.90 [0.80 | 0.74 | 0.69 | 0.66 | 0.64 | 0.62 | 0.61 | 0.60
) ) 0.36 | 0.34 | 0.33
0.60 | 0,30 | 0.30 | 0.26 | 0.24 | 0.22 020 | 0.19 | 018
0.46 [ 0.26 [0.19 | 0.15 | 0.14 | 0,13 | 0.12 | 0.11 | 0,10

0.01 | 0,00 | 0.00 | 0.00 | 0,00 | 0.00_
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m< L<l, = [T Lis), 261
=1
where m = ], my. )

In order te compare the known upper bounds ¥, and &, with bounds [, and
be 10 3 transparent way, lel us assume thal all partial regressions are spanned
by the same number of functions, i.e. we temporarily assume m; = k > 2:1 —
1,2,...,r. In shis case m = k", what vielda

[ LRV (S o
2 ' 2
Y

bous define the ratios g(k,r) = f and §(k,r) = k5. Their values are
tabulated for different ¥, r in Tables I and 2, respechively.
Analysis of these tables leads to the following conclusions.

L. For k > 2 and every r > 2 upper bounda L., L, are closer to the lower bound
m than N, and K, respectively. Even for moderate numbers of independent




variables r and numbers of functions spanning partial regressions k reduction
of the largeat necessary pointa in the optimal design support can be essential,
e, by half for k=4 and r = 3 in Table 2.

2. The only exception is the case £ = 2 when g(k,r) > 1 for all r > 2, but
g(2,r) < 2. Besides, also in this case §(2,r) < 1 for all r > 2.

That is easy to verify that if all the designs for partial regressions are saturated,
then also the global design is satorated, i.e. its support containg the same number
of points ag the number of parameters.

b EXAMPLES

Before presenting numerical resulie let us note that the propesed algorithm may
algo be used in caleulations by hand when a closed form solutions for one
dimensional experimental design subproblems are nown. Thie i illustrated by
the following examples, in which we only sketch muliidimensional optimal designa.

Example 6.1 Let g(f) = 16,8, T t & [-1,1],§ = 1,2,...,r. Consider
the optimum extrapolation experiment design to the point z = {z(1), 2(2), ..., z{r)]T,
|1} > 1,£=1,2,.

Then, the optimal design on the hypercube [—1,1} can be composed on the
grid of Tachebyschew points, using the result from page 184 in Pasman (1986).

Example 5.2 Let gt} = |1,0in1, cont, ..|T with m; = k components, s = 1,2,.. .,
ry t € [, x]. Then, A-optimim experiment design on the hypercube [—r, " i
supported at the knota of the uniform grid with the slep size 1. This design puts
equal masses equal to £77 ab every support point. Optimality of this design follows
from Theorem 1 and the result from page 186 in Pasman (1986).

Example 5.8 Let gi(f) = [1,4,¢%]7 { € [-1,1},§ = 1,2. Using the above proposed
algorithm the following design is obtained for L,~optimality criterion with p = 12:
4 points [+1, +1] enter with equal weigts L, while the central point [0,0] enters
with the weight 0.36. The rest of the design is supported by the points [0, +1] and
[£1,0] with the weighia 0.12.

Let us note that [, criferion with p = 12 is in practice equivalent to B
optimality criterion.

Example 6.4 Let ne cousider the same regression function a8 in Example 5.3 on

the unit square but with A-optimality criterion. Then, the same support points
of the design are obtained with the following weights: L at all the corners of the

square, b at (0,0} and } at the middle paints of all the edges.

o




Example 5.5 For the same regression as in Example 5.3 with Q-optimality cri
terion we obtain the same opiimal design as in Example 5.4.

Let us note thal having generated desygms for one dimensional regression by
AWF algorithm we can easily generalize Examples 5.3, 5.4 and 5.5 to more than
{wo dimensions.

6 CONCLUDING REMARKS

As it can be seen from the above examples, the proposed algorithm is able &0
find approximate optimal experiment designs for regression with a relatively large
number of independent variables in a reasonable computational {ime. The algo-
rithm uses Wynn—Fedorov method for one-dimensional regreasion designa. Thus,
any improvement of their method will make the proposed algorithm more efficient.

The computer code in FORTRAN 77 is available from the anthors cn request
(for mon - commercial use).
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