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How to develop an algorithm?

My answer is very short:

I do not know!
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Searches and Traversal

1. Many algorithmic problems give rise to the need to traverse certain
structures.

2. At times, the structure we have to traverse is present explicitly as one of
the data structures defined in the algorithm (array, vector, tree. . . )

3. At times it is some implicit abstract structure that perhaps cannot be
actually “seen,” but that exists under the surface.

4. When the task has a number of variants — is sufficient to traverse them
all

In each case, the algorithm is reduced to review all elements of the structure
or to find the most natural way of traversing the data structure at hand
(whether explicit or implicit) and thus devise the algorithm.



Loop

1. Start
2. i← 0
3. Do something. . .
4. i← i+ 1
5. If i ≤ N go to step 3.
6. Else— Stop



Traversing
Example

▶ Suppose we are given a simple convex polygon,
▶ we are interested in finding two points of maximal distance on its

borderline.

How to solve this problem?
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Example cont

1 2 3 4 5 6
1 0 11.2 15.6
2 11.2 0
3 15.6 0
4 0 6
5 6 0 6.4
6 6.4 0

Vertices:
1 (4,13)
2 (14,8)
3 (15,2)
4 (10,0)
5 (4,0)
6 (0,5)



Example cont
Simplest case

1. max = 0
2. for i = 1 to 6 do

2.1 for j = 1 to 6 do
2.2 if d[i, j] > max then
2.3 max = d[i,j]
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Example cont
Simplest case

1. max = 0
2. for i = 2 to N do

2.1 for j = 1 to i — 1 do
2.2 if d[i, j] > max then
2.3 max = d[i,j]



Example cont.
“Geometrical approach”
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Divide and Conquer

Idea is very simple:
▶ When we can not solve the big task — sometimes it can be divided into

several smaller tasks.
▶ If this are to big — we will divide them further. . .



Division. . .
Example

1. Let’s assume that we have a long, unordered list L (of numbers).
2. We are interested in finding the largest and smallest elements

appearing in the list.
3. We know one method of finding maximum (and minimum). It is easy. . .



Maximum &Minimum

1. if L consists of one element, then that element is taken as both the
minimum and the maximum; if it consists of two elements, then the
smaller is taken as its minimum and the larger as its maximum;

2. otherwise do the following:
2.1 split L into two halves, Lleft and Lright;
2.2 find their extremal elementsMINleft,MAXleft,MINright, andMAXright;
2.3 select the smaller ofMINleft andMINright; it is the minimal element of L;
2.4 select the larger ofMAXleft andMAXright; it is the maximal element of L.

The above procedure is used for finding the minimum and maximum in each
sublist.



Definition

▶ Recursion is the process of repeating items in a self-similar way.

▶ Recursion is the process a procedure goes through when one of the
steps of the procedure involves invoking the procedure itself. A
procedure that goes through recursion is said to be ‘recursive’.
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Definition

▶ Recursion is the process of repeating items in a self-similar way.
▶ Recursion is the process a procedure goes through when one of the

steps of the procedure involves invoking the procedure itself. A
procedure that goes through recursion is said to be ‘recursive’.

Recursive humor (from the dictionary)
Recursion, see Recursion.



Factorial

Classical definition
0! = 1
n! =

∏n
i=1 i

or
n! = 1× 2× 3× · · · × n

Recursive definition
0! = 1
n! = n× (n− 1)!
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Factorial
Values

In[1]:= 10!
Out[1]= 3628800
In[3]:= 20!
Out[3]= 2432902008176640000
In[4]:= 30!
Out[4]= 265252859812191058636308480000000
In[5]:= 40!
Out[5]= 815915283247897734345611269596115894272000000000



Factorial
Algorithm (“Flow diagram”)

Classical
1. If n = 0, the factorial is equal to 1; Stop.
2. factorial← 1
3. Repeat for i changing from 1 to n

factorial← factorial× i
4. End.

Recursive procedure
1. Function Factorial (parameter is n)
2. result← 1
3. If n = 0; End
4. result← result× Factorial(n− 1)
5. End



Factorial
Algorithm (“Flow diagram”)

Classical
1. If n = 0, the factorial is equal to 1; Stop.
2. factorial← 1
3. Repeat for i changing from 1 to n

factorial← factorial× i
4. End.

Recursive procedure
1. Function Factorial (parameter is n)
2. result← 1
3. If n = 0; End
4. result← result× Factorial(n− 1)
5. End



Factorial in Blockly



Visual form of recursion: Droste Effect



Recursion — Escher
“Prentententoonstelling” (M.C. Escher 1956)

Prentententoonstellingmeans Print Exhibition.
Based on research project Escher and the Droste effect on Math Department
of University of Leiden

https://web.archive.org/web/20211128092821/https://www.universiteitleiden.nl/en/research/research-projects/science/escher-and-the-droste-effect
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Fibonacci series

Definition
fib(0) = 0
fib(1) = 1
fib(n) = fib(n - 1) + fib(n - 2), for n ≥ 2



Fibonacci series

Definition
fib(0) = 0
fib(1) = 1
fib(n) = fib(n - 1) + fib(n - 2), for n ≥ 2

0 0
1 1
2 1  =B2+B1
3 2  =B3+B2
4 3
5 5
6 8
7 13
8 21
9 34
10 55
11 89
12 144
13 233
14 377
15 610
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Fibonacci series in nature



Greatest common divisor

gcd(0,n)=n

gcd(k, n) =
{

n for k = 0;
gcd(nmod k, k) for k > 0.

Homework
▶ Compare this with the previously mentioned flow diagram of Euclidean

Algorithm.
▶ Program this in Blockly
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Binomial coefficient

“Classical”(n
0

)
= 1(n

k

)
= n(n−1)···(n−k+1)

k!

Recurrent version(n
k

)
=

(n−1
k

)
+
(n−1
k−1

)(n
0

)
= 1



Towers of Hanoi
The example is based on a rather ancient puzzle known as the Towers of Hanoi,
originating with Hindu priests in the great temple of Benares. Suppose we are given three
pegs, A, B, and C. On the first peg, A, there are three rings piled in descending order of
magnitude, while the others are empty. We are interested in moving the rings from A to
B, perhaps using C in the process. By the rules of the game, rings are to be moved one at
a time, and at no instant may a larger ring be placed atop a smaller one.



Towers of Hanoi
Example

Three rings
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Towers of Hanoi
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Towers of Hanoi I
Why this name?

In a temple in the city of Benares, India, are 64 discs of precious diamants
piled up to a tower. Each of these round discs is just a little smaller than the
disc below.

Some holy men, monks, have the god given the task to move this tower to a
new place inside the temple. By doing this, they have to obey some holy
rules. The discs are just allowed to be placed at three marked places inside
the temple.

The first place is the one where the tower was before they started to move
it, the second place is the place of the destination, the third place is right
between the start and destination.

The discs are so heavy and precious, that is the holy rules allow just a
movement of one disc at a time.



Towers of Hanoi II
Why this name?

The last rule says that it is at no time allowed to place a disc on top of a
smaller disc, while it is always allowed to place a disc on any disc with a
greater diameter.

At the time when the monks have finished their work and the whole tower is
moved from its starting place to its destination, at that very time, the tower
will collapse and turn to dust and with this tower the whole earth will cease
to exist.

There are many variations on this legend. For instance, in some tellings, the
temple is a monastery and the priests are monks. The temple or monastery
may be said to be in different parts of the world — including Hanoi, Vietnam,
and may be associated with any religion.

When the whole earth will cease to exist?



Towers of Hanoi
The end of the world.

▶ If we have three rings, we need 7 moves (when there are only two — 3).

▶ Seven moves means 23 − 1 and 22 − 1 = 3.
▶ When there are 64 rings, we will need 264 − 1 moves or

18 446 744 073 709 551 615 moves.
▶ Let us assume that one move takes 1 second.
▶ The year has 365× 24× 3600 seconds (31 536 000)
▶ Thus, this work will take 264/31536000 years (roughly 585 billion years)
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The end of the world.

▶ If we have three rings, we need 7 moves (when there are only two — 3).
▶ Seven moves means 23 − 1 and 22 − 1 = 3.
▶ When there are 64 rings, we will need 264 − 1 moves or

18 446 744 073 709 551 615 moves.

▶ Let us assume that one move takes 1 second.
▶ The year has 365× 24× 3600 seconds (31 536 000)
▶ Thus, this work will take 264/31536000 years (roughly 585 billion years)

To name that value:
eighteen quintillion, four hundred forty-six quadrillion, seven hundred
forty-four trillion, seventy-three billion, seven hundred nine million, five
hundred fifty-one thousand, six hundred fifteen
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Towers of Hanoi
How to solve this problem

▶ When there is only one ring — no problem!.

▶ For two rings, the solution is trivial.
▶ If there are three rings, we can divide problem into three simple tasks:

1. Move two “upper” rings to the third peg.
2. Move the greatest ring to the second peg.
3. Once again, move the two rings to the peg with the greatest ring.
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Towers of Hanoi
General case

When there is N rings:
1. Let’s move N− 1 rings from peg A to peg C.
2. The remaining disc (greatest one) is moved from peg A to B.
3. For the remaining (N-1)’s apply the above algorithm disc (peg B can be

used as working, because at the very bottom is the largest ring).
4. Repeat this procedure until you finish the job.

(The first peg is now called A, the second B, and the third C.)



Towers of Hanoi
Recurrent procedure (algorithm)

Subroutinemove N (discs) from X to Y using Z:
1. If N = 1 then output “X → Y”;
2. otherwise (i.e., if N is greater than 1) do the following:

2.1 callmove N− 1 from X to Z using Y;
2.2 output “X → Y”;
2.3 callmove N− 1 from Z to Y using X;

3. return;
Symbolic notation A→ Bmeans “move the disc from the peg A to the peg
B”.
This procedure instructs only the operator (monk).



Towers of Hanoi
Realisation (for N = 3)

Start
move 3 from A to B using C
1. move 2 from A to C using B

1.1 move 1 from A to B using C
1.1.1 A→ B

1.2 A→ C
1.3 move 1 from B to C using A

1.3.1 B→ C
2. A→ B
3. move 2 from C to B using A

3.1 move 1 from C to A using B
3.1.1 C→ A

3.2 C→ B
3.3 move 1 from A to B using C

3.3.1 A→ B



Greedy Algorithms I
and Railroad Contractors

▶ Many algorithmic problems call for producing a type of best result from
an appropriate set of possibilities.

▶ Consider a network of cities and a lazy rail-road contractor. The
contractor was paid to lay out rails so that it would be possible to reach
any city from any other.

▶ The contract, however, did not specify any criteria, such as the need for
certain non stop rail connections, or a maximum number of allowed
cities on the path connecting any two others.

▶ Hence, our contractor, being lazy, is interested in laying down the
cheapest (that is, the shortest) combination of rail segments.



Greedy Algorithms II
and Railroad Contractors

▶ Assume that not all cities can be connected by direct segments of rail to
all others due to objective reasons such as physical obstacles, and that
the distances are given only between those pairs of cities that can be
connected.

▶ We further assume that the cost of directly connecting city A with B is
proportional to the distance between them. Moreover, we do not allow
rail-road junctions outside cities.



Greedy Algorithms
and Railroad Contractors
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Greedy Algorithms
and Railroad Contractors
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This graph is called aminimal spanning tree



Greedy Algorithms

Greedy Algorithm. . . Why that name?



Dynamic Programming
and Weary Travellers

▶ We have (like in the previous example) a network of cities.
▶ Instead of lazy contractor, we have now weary traveller.
▶ Our task in previous example is to find the cheapest set of connections

allowing travel between any two cities from the net.
▶ Now, we have to find the cheapest (shortest) path from city A to city B

(using the existing network).



Dynamic Programming
Example
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Dynamic Programming
Example

Greedy solution
Total cost 15
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Dynamic Programming
Example

Optimal Solution
Total cost 13
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Dynamic Programming

▶ The greedy algorithm finds a path of length 15, which is not as good.
▶ Thus, we will need a slightly different method. The one which better

“predicts the next steps”.
▶ In the first step, we have three options to get from A to B:

1. go to C
2. go to D
3. go to G

▶ cost of the first one is 5 + the (cheapest) cost of travel from C to B;
▶ cost of the second one is 3 + the (cheapest) cost of travel from D to B;
▶ and the cost of the third is 14 + the (cheapest) cost of the travel from G

to B.



Dynamic Programming

How should the optimal algorithm look like?
▶ Let L(x) denotes minimal cost of the path from a node x to the node B
▶ On the each stage, when we can go from the node V to nodes C1,

C2,. . .CN we are choosing such a path, that

cost-from-V-to-CK + L(CK)

is minimal
This can be noted as:

L(V) = minK(cost-from-V-to-CK + L(CK))



Dynamic Programming

This notation suggests using recursion. However, be warned: It is very
dangerous (or inefficient).

There are special methods for solving such problems called dynamic
programming.
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