
The Turing Machine
(Algorithms Part III)

ver. 11 z drobnymi modyfikacjami!

Wojciech Myszka

2023-11-28 07:32:04 +0100

Introduction

This lecture is rather difficult.
I would like to present you algorithmic devices of the simplest imaginable kind,
strikingly primitive in contrast with today’s computers and programming
languages. Nevertheless, they are powerful enough to execute even the most
complex algorithms.

▶ Computers are becoming faster and faster and more sophisticated by the
year.

▶ It is very interesting to discover objects that are as simple as possible yet as
powerful as anything of their kind.

Introduction

This lecture is rather difficult.
I would like to present you algorithmic devices of the simplest imaginable kind,
strikingly primitive in contrast with today’s computers and programming
languages. Nevertheless, they are powerful enough to execute even the most
complex algorithms.
▶ Computers are becoming faster and faster and more sophisticated by the

year.
▶ It is very interesting to discover objects that are as simple as possible yet as

powerful as anything of their kind.

The idea of data

▶ Any data item used by an algorithm, whether as an input, output or
intermediate value, can be thought of as a string of symbols.

▶ Integer number is but a string of digits.
▶ Fractional number can be defined as two strings of digits separated by slash.
▶ Word in English (or any other language) is string of letters; an entire text is

a string of symbols consisting of letter, spaces, punctuation marks, etc.
▶ And so on. . .
▶ The number of different symbols is finite

Consequently, we can write any data item of interest along a one-dimensional
tape, perhaps a long one, which consists of a sequence of squares, each
containing a single symbol that is a member of some finite alphabet.

The idea of data

▶ Any data item used by an algorithm, whether as an input, output or
intermediate value, can be thought of as a string of symbols.

▶ Integer number is but a string of digits.
▶ Fractional number can be defined as two strings of digits separated by slash.
▶ Word in English (or any other language) is string of letters; an entire text is

a string of symbols consisting of letter, spaces, punctuation marks, etc.
▶ And so on. . .
▶ The number of different symbols is finite

Consequently, we can write any data item of interest along a one-dimensional
tape, perhaps a long one, which consists of a sequence of squares, each
containing a single symbol that is a member of some finite alphabet.

Simplifying data
▶ A vector, for example can be depicted as a sequence of the linearised

versions of each of the items, separated by a special symbol, such as “*”.
▶ A two-dimensional array can be spread out row by row along the tape, using

“*” to separate items within each row and, say, “**” to separate rows

Example

11 12 13
21 22 23
31 32 33
41 42 43

Can be written as: 11* 12* 13 ** 21* 22* 23 ** 31* 32* 33 ** 41* 42* 43 **
or as: 11; 21; 31; 41 * 12; 22; 32; 42 * 13; 23; 33; 43 *
or as: {{11, 21, 31, 41}, {12, 22, 32, 42}, {13, 23, 33, 43}}, i.e., as a list.

Simplifying data
▶ A vector, for example can be depicted as a sequence of the linearised

versions of each of the items, separated by a special symbol, such as “*”.
▶ A two-dimensional array can be spread out row by row along the tape, using

“*” to separate items within each row and, say, “**” to separate rows

Example
11 12 13
21 22 23
31 32 33
41 42 43

Can be written as: 11* 12* 13 ** 21* 22* 23 ** 31* 32* 33 ** 41* 42* 43 **
or as: 11; 21; 31; 41 * 12; 22; 32; 42 * 13; 23; 33; 43 *
or as: {{11, 21, 31, 41}, {12, 22, 32, 42}, {13, 23, 33, 43}}, i.e., as a list.

Simplifying data
▶ A vector, for example can be depicted as a sequence of the linearised

versions of each of the items, separated by a special symbol, such as “*”.
▶ A two-dimensional array can be spread out row by row along the tape, using

“*” to separate items within each row and, say, “**” to separate rows

Example
11 12 13
21 22 23
31 32 33
41 42 43

Can be written as: 11* 12* 13 ** 21* 22* 23 ** 31* 32* 33 ** 41* 42* 43 **

or as: 11; 21; 31; 41 * 12; 22; 32; 42 * 13; 23; 33; 43 *
or as: {{11, 21, 31, 41}, {12, 22, 32, 42}, {13, 23, 33, 43}}, i.e., as a list.

Simplifying data
▶ A vector, for example can be depicted as a sequence of the linearised

versions of each of the items, separated by a special symbol, such as “*”.
▶ A two-dimensional array can be spread out row by row along the tape, using

“*” to separate items within each row and, say, “**” to separate rows

Example
11 12 13
21 22 23
31 32 33
41 42 43

Can be written as: 11* 12* 13 ** 21* 22* 23 ** 31* 32* 33 ** 41* 42* 43 **
or as: 11; 21; 31; 41 * 12; 22; 32; 42 * 13; 23; 33; 43 *

or as: {{11, 21, 31, 41}, {12, 22, 32, 42}, {13, 23, 33, 43}}, i.e., as a list.

Simplifying data
▶ A vector, for example can be depicted as a sequence of the linearised

versions of each of the items, separated by a special symbol, such as “*”.
▶ A two-dimensional array can be spread out row by row along the tape, using

“*” to separate items within each row and, say, “**” to separate rows

Example
11 12 13
21 22 23
31 32 33
41 42 43

Can be written as: 11* 12* 13 ** 21* 22* 23 ** 31* 32* 33 ** 41* 42* 43 **
or as: 11; 21; 31; 41 * 12; 22; 32; 42 * 13; 23; 33; 43 *
or as: {{11, 21, 31, 41}, {12, 22, 32, 42}, {13, 23, 33, 43}}, i.e., as a list.

Simplifying data

▶ What about a stack (LIFO) and/or a queue(FIFO)?
▶ Database: it is kind of big table. . .
▶ And a tree. . . ?

T

V

Q R

M N

S

G

W

P

L

Simplifying data
Tree

T

V

Q R

M N

S

G

W

P

L

If we attempt to naively list the
tree’s items level by level, the
precise structure of the tree may
be lost, since the number of
items on a given level is not
fixed:
T ** V; G ** Q; R; S; W; L **
M; N; P**
(stars mark the “end of each
level”) But one thing that can
be recovered is...

T

V

Q R

M N

S

G

W

P

L

Simplifying data
Tree

T

V

Q R

M N

S

G

W

P

L

If we attempt to naively list the
tree’s items level by level, the
precise structure of the tree may
be lost, since the number of
items on a given level is not
fixed:
T ** V; G ** Q; R; S; W; L **
M; N; P**
(stars mark the “end of each
level”) But one thing that can
be recovered is...

T

V

Q R

M N

S

G

W

P

L

Simplifying data
Tree

T

V

Q R

M N

S

G

W

P

L

One way of avoiding the problem is to adopt a variant
of the “nested lists.” Alternatively, we can refine the
method by marking off clusters of immediate offspring,
level by level, always starting at the left. Here is the
resulting linearisation for the tree of
(T) (V; G) (Q; R; S) (W; L) () (M; N) () (P) ()
(The parentheses are considered as special symbols,
like “*” and “**”.)
Notation is very compact and somehow difficult to
read (decode), but allows for linearisation.

Simplifying data — the thesis

The thesis
We assume that any data structure can be stored in a linear form, for example,
respectively composed of a long tape which consists of a sequence of squares,
each containing a single symbol that is a member of some finite alphabet.

Simplifying Control

▶ What the computer program is?

It is a kind of “control structure” defining the order and kind of operations
performed on (input) data.

▶ Each algorithm is finite.
▶ Transition between instructions (states) depends on a current state and on

the value(s) of certain data items.

Start Reminder Is zero?

Stop

Simplifying

Simplifying Control
▶ What the computer program is?

It is a kind of “control structure”
defining the order and kind of operations performed on (input) data.

▶ Each algorithm is finite.
▶ Transition between instructions (states) depends on a current state and on

the value(s) of certain data items.

Start Reminder Is zero?

Stop

Simplifying

Simplifying Control
▶ What the computer program is?

It is a kind of “control structure”
defining the order and kind of operations performed on (input) data.

▶ Each algorithm is finite.
▶ Transition between instructions (states) depends on a current state and on

the value(s) of certain data items.

Start Reminder Is zero?

Stop

Simplifying

Simplifying Control

▶ What the computer program is?
It is a kind of “control structure” defining the order and kind of operations
performed on (input) data.

▶ Each algorithm is finite.
▶ Transition between instructions (states) depends on a current state and on

the value(s) of certain data items.

Start Reminder Is zero?

Stop

Simplifying

Simplifying Control

▶ What the computer program is?
It is a kind of “control structure” defining the order and kind of operations
performed on (input) data.

▶ Each algorithm is finite.

▶ Transition between instructions (states) depends on a current state and on
the value(s) of certain data items.

Start Reminder Is zero?

Stop

Simplifying

Simplifying Control

▶ What the computer program is?
It is a kind of “control structure” defining the order and kind of operations
performed on (input) data.

▶ Each algorithm is finite.
▶ Transition between instructions (states) depends on a current state and on

the value(s) of certain data items.

Start Reminder Is zero?

Stop

Simplifying

Simplifying Control

▶ What the computer program is?
It is a kind of “control structure” defining the order and kind of operations
performed on (input) data.

▶ Each algorithm is finite.
▶ Transition between instructions (states) depends on a current state and on

the value(s) of certain data items.

Start Reminder Is zero?

Stop

Simplifying

Simplifying control — the thesis

▶ One of the things crucial to simplifying control is the finiteness of an
algorithm’s text.

▶ The processor can be in one of only finitely many locations in that text, and
hence we can make do with a rather primitive mechanism, containing some
kind of gearbox that can be in one of finitely many positions, or states.

▶ If we think of the states of the gearbox as encoding locations in the
algorithm, then moving around in the algorithm can be modelled simply by
changing states.

Example

Start
0

Reminder
1

Is zero?
2

Stop
4

Simplifying
3

State m n r
0 10 18 —
1 10 18 10
2 10 18 10
3 18 10 10
1 18 10 8
2 18 10 8
3 10 8 8
1 10 8 2
2 10 8 2
3 8 2 2
1 8 2 0
2 8 2 0
4 8 2 0

The Turing Machine

A Turing machine M consists of
1. a (finite) set of states,
2. a (finite) alphabet of symbols,
3. an infinite tape with its marked-off squares and
4. a sensing-and-writing head that can travel along the tape, one square at a

time.
5. a state transition diagram, sometimes called simply a transition diagram,

containing the instructions that cause changes to take place at each step
(the heart of the machine).

The Turing Machine
Formal description

The Turing machine, according to Hopcroft and Ullman is 7-tuple:

M = ⟨Q, Γ, b,Σ, δ, q0,F ⟩

where:
▶ Q is a finite set of states,
▶ Γ is an alphabet (finite set of symbols)
▶ b ∈ Γ is an empty symbol
▶ Σ ⊆ Γ \ {b} is a set of input symbols
▶ δ : Q × Γ→ Q × Γ× {L,R} is a “transition diagram”, (L standing for “left”

and R standing for “right”).
▶ q0 ∈ Q is an initial state.
▶ F ⊆ Q is a set of “halting states.”

The Turing Machine
A transition diagram

▶ A transition diagram can be viewed as a directed graph whose nodes represent the states.
We use rounded rectangles (rountangles in the sequel) for states.

▶ An edge leading from state s to state t is called a transition, and is labelled with a code
of the form a/b, L or a/b,R , where a and b are symbols.

▶ The a part of the label is called the transition’s trigger, and it denotes the letter read
from the tape.

▶ The b part is the action, and denotes the letter written on the tape.
▶ Finally, the L and R part provides the direction to move, with L standing for “left” and R

for “right.” The precise meaning of a transition from s to t labelled with a/b, L is as
follows (the case for a/b,R is similar):

During its operation, whenever the Turing machine is in state s, and a is the symbol
sensed at that moment by the head, the machine will erase the symbol a, writing b in
its place, will move one square to the left, and will enter state t.

The Turing Machine
A transition diagram

▶ A transition diagram can be viewed as a directed graph whose nodes represent the states.
We use rounded rectangles (rountangles in the sequel) for states.

▶ An edge leading from state s to state t is called a transition, and is labelled with a code
of the form a/b, L or a/b,R , where a and b are symbols.

▶ The a part of the label is called the transition’s trigger, and it denotes the letter read
from the tape.

▶ The b part is the action, and denotes the letter written on the tape.
▶ Finally, the L and R part provides the direction to move, with L standing for “left” and R

for “right.” The precise meaning of a transition from s to t labelled with a/b, L is as
follows (the case for a/b,R is similar):

During its operation, whenever the Turing machine is in state s, and a is the symbol
sensed at that moment by the head, the machine will erase the symbol a, writing b in
its place, will move one square to the left, and will enter state t.

The Turing Machine
A transition diagram

▶ A transition diagram can be viewed as a directed graph whose nodes represent the states.
We use rounded rectangles (rountangles in the sequel) for states.

▶ An edge leading from state s to state t is called a transition, and is labelled with a code
of the form a/b, L or a/b,R , where a and b are symbols.

▶ The a part of the label is called the transition’s trigger, and it denotes the letter read
from the tape.

▶ The b part is the action, and denotes the letter written on the tape.
▶ Finally, the L and R part provides the direction to move, with L standing for “left” and R

for “right.” The precise meaning of a transition from s to t labelled with a/b, L is as
follows (the case for a/b,R is similar):

During its operation, whenever the Turing machine is in state s, and a is the symbol
sensed at that moment by the head, the machine will erase the symbol a, writing b in
its place, will move one square to the left, and will enter state t.

The Turing Machine
A transition diagram

▶ A transition diagram can be viewed as a directed graph whose nodes represent the states.
We use rounded rectangles (rountangles in the sequel) for states.

▶ An edge leading from state s to state t is called a transition, and is labelled with a code
of the form a/b, L or a/b,R , where a and b are symbols.

▶ The a part of the label is called the transition’s trigger, and it denotes the letter read
from the tape.

▶ The b part is the action, and denotes the letter written on the tape.

▶ Finally, the L and R part provides the direction to move, with L standing for “left” and R
for “right.” The precise meaning of a transition from s to t labelled with a/b, L is as
follows (the case for a/b,R is similar):

During its operation, whenever the Turing machine is in state s, and a is the symbol
sensed at that moment by the head, the machine will erase the symbol a, writing b in
its place, will move one square to the left, and will enter state t.

The Turing Machine
A transition diagram

▶ A transition diagram can be viewed as a directed graph whose nodes represent the states.
We use rounded rectangles (rountangles in the sequel) for states.

▶ An edge leading from state s to state t is called a transition, and is labelled with a code
of the form a/b, L or a/b,R , where a and b are symbols.

▶ The a part of the label is called the transition’s trigger, and it denotes the letter read
from the tape.

▶ The b part is the action, and denotes the letter written on the tape.
▶ Finally, the L and R part provides the direction to move, with L standing for “left” and R

for “right.” The precise meaning of a transition from s to t labelled with a/b, L is as
follows (the case for a/b,R is similar):

During its operation, whenever the Turing machine is in state s, and a is the symbol
sensed at that moment by the head, the machine will erase the symbol a, writing b in
its place, will move one square to the left, and will enter state t.

The Turing Machine
A transition diagram

▶ A transition diagram can be viewed as a directed graph whose nodes represent the states.
We use rounded rectangles (rountangles in the sequel) for states.

▶ An edge leading from state s to state t is called a transition, and is labelled with a code
of the form a/b, L or a/b,R , where a and b are symbols.

▶ The a part of the label is called the transition’s trigger, and it denotes the letter read
from the tape.

▶ The b part is the action, and denotes the letter written on the tape.
▶ Finally, the L and R part provides the direction to move, with L standing for “left” and R

for “right.” The precise meaning of a transition from s to t labelled with a/b, L is as
follows (the case for a/b,R is similar):

During its operation, whenever the Turing machine is in state s, and a is the symbol
sensed at that moment by the head, the machine will erase the symbol a, writing b in
its place, will move one square to the left, and will enter state t.

The Turing Machine: The Example

▶ The Alphabet — three symbols: a, b i # (means “empty” or “nothing”)
▶ Data

. . . # # a b b a # # . . .

The Turing Machine: The Example
The transition diagram

markstart

movea testa

moveb testb

YES NO return

a/#,R

b/#,R

#/#,L

#/#,L

(a/a,R) (b/b,R)

a/#,L

#/#,L

b/b,L

#/#,L

(a/a,R) (b/b,R)

b/#,L#/#,L

a/a,L

(a/a,L) (b/b,L)

#/#,R

Halting-states are described as “YES” and “NO.”

The Turing Machine
Example 1

. . . # # a b b a # # . . .
•

markstart

movea testa

moveb testb

YES NO return

a/#,R

b/#,R

#/#,L

#/#,L

(a/a,R) (b/b,R)

a/#,L

#/#,L

b/b,L

#/#,L

(a/a,R) (b/b,R)

b/#,L#/#,L

a/a,L

(a/a,L) (b/b,L)

#/#,R

The Turing Machine
Example 1

. . . # # # b b a # # . . .
•

markstart

movea testa

moveb testb

YES NO return

a/#,R

b/#,R

#/#,L

#/#,L

(a/a,R) (b/b,R)

a/#,L

#/#,L

b/b,L

#/#,L

(a/a,R) (b/b,R)

b/#,L#/#,L

a/a,L

(a/a,L) (b/b,L)

#/#,R

The Turing Machine
Example 1

. . . # # # b b a # # . . .
•

markstart

movea testa

moveb testb

YES NO return

a/#,R

b/#,R

#/#,L

#/#,L

(a/a,R) (b/b,R)

a/#,L

#/#,L

b/b,L

#/#,L

(a/a,R) (b/b,R)

b/#,L#/#,L

a/a,L

(a/a,L) (b/b,L)

#/#,R

The Turing Machine
Example 1

. . . # # # b b a # # . . .
•

markstart

movea testa

moveb testb

YES NO return

a/#,R

b/#,R

#/#,L

#/#,L

(a/a,R) (b/b,R)

a/#,L

#/#,L

b/b,L

#/#,L

(a/a,R) (b/b,R)

b/#,L#/#,L

a/a,L

(a/a,L) (b/b,L)

#/#,R

The Turing Machine
Example 1

. . . # # # b b a # # . . .
•

markstart

movea testa

moveb testb

YES NO return

a/#,R

b/#,R

#/#,L

#/#,L

(a/a,R) (b/b,R)

a/#,L

#/#,L

b/b,L

#/#,L

(a/a,R) (b/b,R)

b/#,L#/#,L

a/a,L

(a/a,L) (b/b,L)

#/#,R

The Turing Machine
Example 1

. . . # # # b b a # # . . .
•

markstart

movea testa

moveb testb

YES NO return

a/#,R

b/#,R

#/#,L

#/#,L

(a/a,R) (b/b,R)

a/#,L

#/#,L

b/b,L

#/#,L

(a/a,R) (b/b,R)

b/#,L#/#,L

a/a,L

(a/a,L) (b/b,L)

#/#,R

The Turing Machine
Example 1

. . . # # # b b # # # . . .
•

markstart

movea testa

moveb testb

YES NO return

a/#,R

b/#,R

#/#,L

#/#,L

(a/a,R) (b/b,R)

a/#,L

#/#,L

b/b,L

#/#,L

(a/a,R) (b/b,R)

b/#,L#/#,L

a/a,L

(a/a,L) (b/b,L)

#/#,R

The Turing Machine
Example 1

. . . # # # b b # # # . . .
•

markstart

movea testa

moveb testb

YES NO return

a/#,R

b/#,R

#/#,L

#/#,L

(a/a,R) (b/b,R)

a/#,L

#/#,L

b/b,L

#/#,L

(a/a,R) (b/b,R)

b/#,L#/#,L

a/a,L

(a/a,L) (b/b,L)

#/#,R

The Turing Machine
Example 1

. . . # # # b b # # # . . .
•

markstart

movea testa

moveb testb

YES NO return

a/#,R

b/#,R

#/#,L

#/#,L

(a/a,R) (b/b,R)

a/#,L

#/#,L

b/b,L

#/#,L

(a/a,R) (b/b,R)

b/#,L#/#,L

a/a,L

(a/a,L) (b/b,L)

#/#,R

The Turing Machine
Example 1

. . . # # # b b # # # . . .
•

markstart

movea testa

moveb testb

YES NO return

a/#,R

b/#,R

#/#,L

#/#,L

(a/a,R) (b/b,R)

a/#,L

#/#,L

b/b,L

#/#,L

(a/a,R) (b/b,R)

b/#,L#/#,L

a/a,L

(a/a,L) (b/b,L)

#/#,R

The Turing Machine
Example 1

. . . # # # # b # # # . . .
•

markstart

movea testa

moveb testb

YES NO return

a/#,R

b/#,R

#/#,L

#/#,L

(a/a,R) (b/b,R)

a/#,L

#/#,L

b/b,L

#/#,L

(a/a,R) (b/b,R)

b/#,L#/#,L

a/a,L

(a/a,L) (b/b,L)

#/#,R

The Turing Machine
Example 1

. . . # # # # b # # # . . .
•

markstart

movea testa

moveb testb

YES NO return

a/#,R

b/#,R

#/#,L

#/#,L

(a/a,R) (b/b,R)

a/#,L

#/#,L

b/b,L

#/#,L

(a/a,R) (b/b,R)

b/#,L#/#,L

a/a,L

(a/a,L) (b/b,L)

#/#,R

The Turing Machine
Example 1

. . . # # # # b # # # . . .
•

markstart

movea testa

moveb testb

YES NO return

a/#,R

b/#,R

#/#,L

#/#,L

(a/a,R) (b/b,R)

a/#,L

#/#,L

b/b,L

#/#,L

(a/a,R) (b/b,R)

b/#,L#/#,L

a/a,L

(a/a,L) (b/b,L)

#/#,R

The Turing Machine
Example 1

. . . # # # # # # # # . . .
•

markstart

movea testa

moveb testb

YES NO return

a/#,R

b/#,R

#/#,L

#/#,L

(a/a,R) (b/b,R)

a/#,L

#/#,L

b/b,L

#/#,L

(a/a,R) (b/b,R)

b/#,L#/#,L

a/a,L

(a/a,L) (b/b,L)

#/#,R

The Turing Machine
Example 1

. . . # # # # # # # # . . .
•

markstart

movea testa

moveb testb

YES NO return

a/#,R

b/#,R

#/#,L

#/#,L

(a/a,R) (b/b,R)

a/#,L

#/#,L

b/b,L

#/#,L

(a/a,R) (b/b,R)

b/#,L#/#,L

a/a,L

(a/a,L) (b/b,L)

#/#,R

The Turing Machine
Example 1

. . . # # # # # # # # . . .
•

markstart

movea testa

moveb testb

YES NO return

a/#,R

b/#,R

#/#,L

#/#,L

(a/a,R) (b/b,R)

a/#,L

#/#,L

b/b,L

#/#,L

(a/a,R) (b/b,R)

b/#,L#/#,L

a/a,L

(a/a,L) (b/b,L)

#/#,R

The Turing Machine
Example 2

. . . # # a b a b # # . . .
•

markstart

movea testa

moveb testb

YES NO return

a/#,R

b/#,R

#/#,L

#/#,L

(a/a,R) (b/b,R)

a/#,L

#/#,L

b/b,L

#/#,L

(a/a,R) (b/b,R)

b/#,L#/#,L

a/a,L

(a/a,L) (b/b,L)

#/#,R

The Turing Machine
Example 2

. . . # # # b a b # # . . .
•

markstart

movea testa

moveb testb

YES NO return

a/#,R

b/#,R

#/#,L

#/#,L

(a/a,R) (b/b,R)

a/#,L

#/#,L

b/b,L

#/#,L

(a/a,R) (b/b,R)

b/#,L#/#,L

a/a,L

(a/a,L) (b/b,L)

#/#,R

The Turing Machine
Example 2

. . . # # # b a b # # . . .
•

markstart

movea testa

moveb testb

YES NO return

a/#,R

b/#,R

#/#,L

#/#,L

(a/a,R) (b/b,R)

a/#,L

#/#,L

b/b,L

#/#,L

(a/a,R) (b/b,R)

b/#,L#/#,L

a/a,L

(a/a,L) (b/b,L)

#/#,R

The Turing Machine
Example 2

. . . # # # b a b # # . . .
•

markstart

movea testa

moveb testb

YES NO return

a/#,R

b/#,R

#/#,L

#/#,L

(a/a,R) (b/b,R)

a/#,L

#/#,L

b/b,L

#/#,L

(a/a,R) (b/b,R)

b/#,L#/#,L

a/a,L

(a/a,L) (b/b,L)

#/#,R

The Turing Machine
Example 2

. . . # # # b a b # # . . .
•

markstart

movea testa

moveb testb

YES NO return

a/#,R

b/#,R

#/#,L

#/#,L

(a/a,R) (b/b,R)

a/#,L

#/#,L

b/b,L

#/#,L

(a/a,R) (b/b,R)

b/#,L#/#,L

a/a,L

(a/a,L) (b/b,L)

#/#,R

The Turing Machine
Example 2

. . . # # # b a b # # . . .
•

markstart

movea testa

moveb testb

YES NO return

a/#,R

b/#,R

#/#,L

#/#,L

(a/a,R) (b/b,R)

a/#,L

#/#,L

b/b,L

#/#,L

(a/a,R) (b/b,R)

b/#,L#/#,L

a/a,L

(a/a,L) (b/b,L)

#/#,R

The Turing Machine
Example 2

. . . # # # b a b # # . . .
•

markstart

movea testa

moveb testb

YES NO return

a/#,R

b/#,R

#/#,L

#/#,L

(a/a,R) (b/b,R)

a/#,L

#/#,L

b/b,L

#/#,L

(a/a,R) (b/b,R)

b/#,L#/#,L

a/a,L

(a/a,L) (b/b,L)

#/#,R

The Turing Machine
Example 3

. . . # # a b a a # # . . .
•

markstart

movea testa

moveb testb

YES NO return

a/#,R

b/#,R

#/#,L

#/#,L

(a/a,R) (b/b,R)

a/#,L

#/#,L

b/b,L

#/#,L

(a/a,R) (b/b,R)

b/#,L#/#,L

a/a,L

(a/a,L) (b/b,L)

#/#,R

The Turing Machine
Example 3

. . . # # # b a a # # . . .
•

markstart

movea testa

moveb testb

YES NO return

a/#,R

b/#,R

#/#,L

#/#,L

(a/a,R) (b/b,R)

a/#,L

#/#,L

b/b,L

#/#,L

(a/a,R) (b/b,R)

b/#,L#/#,L

a/a,L

(a/a,L) (b/b,L)

#/#,R

The Turing Machine
Example 3

. . . # # # b a a # # . . .
•

markstart

movea testa

moveb testb

YES NO return

a/#,R

b/#,R

#/#,L

#/#,L

(a/a,R) (b/b,R)

a/#,L

#/#,L

b/b,L

#/#,L

(a/a,R) (b/b,R)

b/#,L#/#,L

a/a,L

(a/a,L) (b/b,L)

#/#,R

The Turing Machine
Example 3

. . . # # # b a a # # . . .
•

markstart

movea testa

moveb testb

YES NO return

a/#,R

b/#,R

#/#,L

#/#,L

(a/a,R) (b/b,R)

a/#,L

#/#,L

b/b,L

#/#,L

(a/a,R) (b/b,R)

b/#,L#/#,L

a/a,L

(a/a,L) (b/b,L)

#/#,R

The Turing Machine
Example 3

. . . # # # b a a # # . . .
•

markstart

movea testa

moveb testb

YES NO return

a/#,R

b/#,R

#/#,L

#/#,L

(a/a,R) (b/b,R)

a/#,L

#/#,L

b/b,L

#/#,L

(a/a,R) (b/b,R)

b/#,L#/#,L

a/a,L

(a/a,L) (b/b,L)

#/#,R

The Turing Machine
Example 3

. . . # # # b a a # # . . .
•

markstart

movea testa

moveb testb

YES NO return

a/#,R

b/#,R

#/#,L

#/#,L

(a/a,R) (b/b,R)

a/#,L

#/#,L

b/b,L

#/#,L

(a/a,R) (b/b,R)

b/#,L#/#,L

a/a,L

(a/a,L) (b/b,L)

#/#,R

The Turing Machine
Example 3

. . . # # # b a # # # . . .
•

markstart

movea testa

moveb testb

YES NO return

a/#,R

b/#,R

#/#,L

#/#,L

(a/a,R) (b/b,R)

a/#,L

#/#,L

b/b,L

#/#,L

(a/a,R) (b/b,R)

b/#,L#/#,L

a/a,L

(a/a,L) (b/b,L)

#/#,R

The Turing Machine
Example 3

. . . # # # b a # # # . . .
•

markstart

movea testa

moveb testb

YES NO return

a/#,R

b/#,R

#/#,L

#/#,L

(a/a,R) (b/b,R)

a/#,L

#/#,L

b/b,L

#/#,L

(a/a,R) (b/b,R)

b/#,L#/#,L

a/a,L

(a/a,L) (b/b,L)

#/#,R

The Turing Machine
Example 3

. . . # # # b a # # # . . .
•

markstart

movea testa

moveb testb

YES NO return

a/#,R

b/#,R

#/#,L

#/#,L

(a/a,R) (b/b,R)

a/#,L

#/#,L

b/b,L

#/#,L

(a/a,R) (b/b,R)

b/#,L#/#,L

a/a,L

(a/a,L) (b/b,L)

#/#,R

The Turing Machine
Example 3

. . . # # # b a # # # . . .
•

markstart

movea testa

moveb testb

YES NO return

a/#,R

b/#,R

#/#,L

#/#,L

(a/a,R) (b/b,R)

a/#,L

#/#,L

b/b,L

#/#,L

(a/a,R) (b/b,R)

b/#,L#/#,L

a/a,L

(a/a,L) (b/b,L)

#/#,R

The Turing Machine
Example 3

. . . # # # # a # # # . . .
•

markstart

movea testa

moveb testb

YES NO return

a/#,R

b/#,R

#/#,L

#/#,L

(a/a,R) (b/b,R)

a/#,L

#/#,L

b/b,L

#/#,L

(a/a,R) (b/b,R)

b/#,L#/#,L

a/a,L

(a/a,L) (b/b,L)

#/#,R

The Turing Machine
Example 3

. . . # # # # a # # # . . .
•

markstart

movea testa

moveb testb

YES NO return

a/#,R

b/#,R

#/#,L

#/#,L

(a/a,R) (b/b,R)

a/#,L

#/#,L

b/b,L

#/#,L

(a/a,R) (b/b,R)

b/#,L#/#,L

a/a,L

(a/a,L) (b/b,L)

#/#,R

The Turing Machine
Example 3

. . . # # # # a # # # . . .
•

markstart

movea testa

moveb testb

YES NO return

a/#,R

b/#,R

#/#,L

#/#,L

(a/a,R) (b/b,R)

a/#,L

#/#,L

b/b,L

#/#,L

(a/a,R) (b/b,R)

b/#,L#/#,L

a/a,L

(a/a,L) (b/b,L)

#/#,R

The Turing Machine
Example 3

. . . # # # # a # # # . . .
•

markstart

movea testa

moveb testb

YES NO return

a/#,R

b/#,R

#/#,L

#/#,L

(a/a,R) (b/b,R)

a/#,L

#/#,L

b/b,L

#/#,L

(a/a,R) (b/b,R)

b/#,L#/#,L

a/a,L

(a/a,L) (b/b,L)

#/#,R

The Turing Machine

▶ A Turing Machine can be viewed as a computer with a single fixed program.
▶ The software is the transition diagram
▶ The hardware consists of the tape and head, as well as the (implicit)

mechanism that actually moves through the transition diagram changing
states and controlling the head’s reading, writing, erasing, and moving
activities.

The Turing Machine
Variants

▶ Turing machines with a tape that is infinite to the right only, the input appearing
justified to the left, and the machine being constrained never to attempt to move
“off” the leftmost square.

▶ Two tapes: one for the input and one for the output.
▶ Turing Machine with many tapes, each with its own read/write head, in such a way

that the transitions are based on the entire set of symbols seen simultaneously by the
heads.

▶ Two-dimensional tape giving rise to four, not two, possible moving directions.
▶ Non-deterministic Turing machines. The idea is to allow many transitions with the

same trigger to emanate from a state. The machine then has a choice of which
transition to take.

▶ It can be (not-easily) proved that all this machines are equivalent (this meant that
each of this machines can simulate any other).

The Turing Machine
Variants

▶ Turing machines with a tape that is infinite to the right only, the input appearing
justified to the left, and the machine being constrained never to attempt to move
“off” the leftmost square.

▶ Two tapes: one for the input and one for the output.

▶ Turing Machine with many tapes, each with its own read/write head, in such a way
that the transitions are based on the entire set of symbols seen simultaneously by the
heads.

▶ Two-dimensional tape giving rise to four, not two, possible moving directions.
▶ Non-deterministic Turing machines. The idea is to allow many transitions with the

same trigger to emanate from a state. The machine then has a choice of which
transition to take.

▶ It can be (not-easily) proved that all this machines are equivalent (this meant that
each of this machines can simulate any other).

The Turing Machine
Variants

▶ Turing machines with a tape that is infinite to the right only, the input appearing
justified to the left, and the machine being constrained never to attempt to move
“off” the leftmost square.

▶ Two tapes: one for the input and one for the output.
▶ Turing Machine with many tapes, each with its own read/write head, in such a way

that the transitions are based on the entire set of symbols seen simultaneously by the
heads.

▶ Two-dimensional tape giving rise to four, not two, possible moving directions.
▶ Non-deterministic Turing machines. The idea is to allow many transitions with the

same trigger to emanate from a state. The machine then has a choice of which
transition to take.

▶ It can be (not-easily) proved that all this machines are equivalent (this meant that
each of this machines can simulate any other).

The Turing Machine
Variants

▶ Turing machines with a tape that is infinite to the right only, the input appearing
justified to the left, and the machine being constrained never to attempt to move
“off” the leftmost square.

▶ Two tapes: one for the input and one for the output.
▶ Turing Machine with many tapes, each with its own read/write head, in such a way

that the transitions are based on the entire set of symbols seen simultaneously by the
heads.

▶ Two-dimensional tape giving rise to four, not two, possible moving directions.

▶ Non-deterministic Turing machines. The idea is to allow many transitions with the
same trigger to emanate from a state. The machine then has a choice of which
transition to take.

▶ It can be (not-easily) proved that all this machines are equivalent (this meant that
each of this machines can simulate any other).

The Turing Machine
Variants

▶ Turing machines with a tape that is infinite to the right only, the input appearing
justified to the left, and the machine being constrained never to attempt to move
“off” the leftmost square.

▶ Two tapes: one for the input and one for the output.
▶ Turing Machine with many tapes, each with its own read/write head, in such a way

that the transitions are based on the entire set of symbols seen simultaneously by the
heads.

▶ Two-dimensional tape giving rise to four, not two, possible moving directions.
▶ Non-deterministic Turing machines. The idea is to allow many transitions with the

same trigger to emanate from a state. The machine then has a choice of which
transition to take.

▶ It can be (not-easily) proved that all this machines are equivalent (this meant that
each of this machines can simulate any other).

The Turing Machine
Variants

▶ Turing machines with a tape that is infinite to the right only, the input appearing
justified to the left, and the machine being constrained never to attempt to move
“off” the leftmost square.

▶ Two tapes: one for the input and one for the output.
▶ Turing Machine with many tapes, each with its own read/write head, in such a way

that the transitions are based on the entire set of symbols seen simultaneously by the
heads.

▶ Two-dimensional tape giving rise to four, not two, possible moving directions.
▶ Non-deterministic Turing machines. The idea is to allow many transitions with the

same trigger to emanate from a state. The machine then has a choice of which
transition to take.

▶ It can be (not-easily) proved that all this machines are equivalent (this meant that
each of this machines can simulate any other).

The Turing Machine

1. Turing machine has only a finite number of states.
2. Programming must not be easy (try to build a machine multiplying two

numbers!)
3. Its action is likely to be very slow, and the manual simulation is quite

tedious.
4. But what really Turing machine can do?

Turing Machine
The Church/Turing Thesis

▶ What indeed can be done with Turing machines, for whatever cost?

▶ Which algorithmic problems can be solved by an appropriately programmed
Turing machine?

▶ Turing machines are capable of solving any effectively solvable algorithmic
problem!

Turing Machine
The Church/Turing Thesis

▶ What indeed can be done with Turing machines, for whatever cost?
▶ Which algorithmic problems can be solved by an appropriately programmed

Turing machine?

▶ Turing machines are capable of solving any effectively solvable algorithmic
problem!

Turing Machine
The Church/Turing Thesis

▶ What indeed can be done with Turing machines, for whatever cost?
▶ Which algorithmic problems can be solved by an appropriately programmed

Turing machine?
▶ Turing machines are capable of solving any effectively solvable algorithmic

problem!

Turing Machine
The Church/Turing Thesis

▶ Any algorithmic problem for which we can find an algorithm that can be
programmed in some programming language, any language, running on
some computer, any computer, even one that has not been built yet but can
be built, and even one that will require unbounded amounts of time and
memory space for ever-larger inputs, is also solvable by a Turing machine.

This statement is one version of the so-called Church/Turing (CT) thesis.
It can be proved that after mentioned computing mechanical machine designed
by Babbage (analytical engine) is equivalent to Turing Machine.

Turing Machine
The Church/Turing Thesis

▶ Any algorithmic problem for which we can find an algorithm that can be
programmed in some programming language, any language, running on
some computer, any computer, even one that has not been built yet but can
be built, and even one that will require unbounded amounts of time and
memory space for ever-larger inputs, is also solvable by a Turing machine.

This statement is one version of the so-called Church/Turing (CT) thesis.

It can be proved that after mentioned computing mechanical machine designed
by Babbage (analytical engine) is equivalent to Turing Machine.

Turing Machine
The Church/Turing Thesis

▶ Any algorithmic problem for which we can find an algorithm that can be
programmed in some programming language, any language, running on
some computer, any computer, even one that has not been built yet but can
be built, and even one that will require unbounded amounts of time and
memory space for ever-larger inputs, is also solvable by a Turing machine.

This statement is one version of the so-called Church/Turing (CT) thesis.
It can be proved that after mentioned computing mechanical machine designed
by Babbage (analytical engine) is equivalent to Turing Machine.

Church/Turing Thesis implications

1. It is important to realize that the CT thesis is a thesis, not a theorem, and
hence cannot be proved in the mathematical sense of the word.

2. The CT thesis implies that the most powerful super-computer, with the
most sophisticated array of programming languages, interpreters, compilers,
assemblers, and what have you, is no more powerful than a home computer
with its simplistic programming language.

3. All programming languages are equivalent (in the sense that every problem,
which can be programmed in one language can be programmed in any other
language as well. . .)

Counter Programs
Another Very Primitive Model

▶ A counter program can manipulate non-negative integers stored in variables.

▶ The model, or language, allows just three types of elementary operations on variables,
interpreted in the standard way (where, by convention, Y − 1 is defined to be 0 if Y is
already 0):

1. X ← 0,
2. X ← Y + 1,
3. X ← Y − 1

The variables are called counters because the limited operations enable them, in essence,
only to count.

▶ The control structures of a counter program include simple sequencing and the conditional
goto statement:
if X = 0 goto G

Let us note that this model is much closer to the computer model proposed by von Neumann
than a Turing machine!

Counter Programs
Another Very Primitive Model

▶ A counter program can manipulate non-negative integers stored in variables.
▶ The model, or language, allows just three types of elementary operations on variables,

interpreted in the standard way (where, by convention, Y − 1 is defined to be 0 if Y is
already 0):

1. X ← 0,
2. X ← Y + 1,
3. X ← Y − 1

The variables are called counters because the limited operations enable them, in essence,
only to count.

▶ The control structures of a counter program include simple sequencing and the conditional
goto statement:
if X = 0 goto G

Let us note that this model is much closer to the computer model proposed by von Neumann
than a Turing machine!

Counter Programs
Another Very Primitive Model

▶ A counter program can manipulate non-negative integers stored in variables.
▶ The model, or language, allows just three types of elementary operations on variables,

interpreted in the standard way (where, by convention, Y − 1 is defined to be 0 if Y is
already 0):

1. X ← 0,

2. X ← Y + 1,
3. X ← Y − 1

The variables are called counters because the limited operations enable them, in essence,
only to count.

▶ The control structures of a counter program include simple sequencing and the conditional
goto statement:
if X = 0 goto G

Let us note that this model is much closer to the computer model proposed by von Neumann
than a Turing machine!

Counter Programs
Another Very Primitive Model

▶ A counter program can manipulate non-negative integers stored in variables.
▶ The model, or language, allows just three types of elementary operations on variables,

interpreted in the standard way (where, by convention, Y − 1 is defined to be 0 if Y is
already 0):

1. X ← 0,
2. X ← Y + 1,

3. X ← Y − 1

The variables are called counters because the limited operations enable them, in essence,
only to count.

▶ The control structures of a counter program include simple sequencing and the conditional
goto statement:
if X = 0 goto G

Let us note that this model is much closer to the computer model proposed by von Neumann
than a Turing machine!

Counter Programs
Another Very Primitive Model

▶ A counter program can manipulate non-negative integers stored in variables.
▶ The model, or language, allows just three types of elementary operations on variables,

interpreted in the standard way (where, by convention, Y − 1 is defined to be 0 if Y is
already 0):

1. X ← 0,
2. X ← Y + 1,
3. X ← Y − 1

The variables are called counters because the limited operations enable them, in essence,
only to count.

▶ The control structures of a counter program include simple sequencing and the conditional
goto statement:
if X = 0 goto G

Let us note that this model is much closer to the computer model proposed by von Neumann
than a Turing machine!

Counter Programs
Another Very Primitive Model

▶ A counter program can manipulate non-negative integers stored in variables.
▶ The model, or language, allows just three types of elementary operations on variables,

interpreted in the standard way (where, by convention, Y − 1 is defined to be 0 if Y is
already 0):

1. X ← 0,
2. X ← Y + 1,
3. X ← Y − 1

The variables are called counters because the limited operations enable them, in essence,
only to count.

▶ The control structures of a counter program include simple sequencing and the conditional
goto statement:
if X = 0 goto G

Let us note that this model is much closer to the computer model proposed by von Neumann
than a Turing machine!

Counter Programs
Another Very Primitive Model

▶ A counter program can manipulate non-negative integers stored in variables.
▶ The model, or language, allows just three types of elementary operations on variables,

interpreted in the standard way (where, by convention, Y − 1 is defined to be 0 if Y is
already 0):

1. X ← 0,
2. X ← Y + 1,
3. X ← Y − 1

The variables are called counters because the limited operations enable them, in essence,
only to count.

▶ The control structures of a counter program include simple sequencing and the conditional
goto statement:
if X = 0 goto G

Let us note that this model is much closer to the computer model proposed by von Neumann
than a Turing machine!

Counter Programs
Another Very Primitive Model

▶ A counter program can manipulate non-negative integers stored in variables.
▶ The model, or language, allows just three types of elementary operations on variables,

interpreted in the standard way (where, by convention, Y − 1 is defined to be 0 if Y is
already 0):

1. X ← 0,
2. X ← Y + 1,
3. X ← Y − 1

The variables are called counters because the limited operations enable them, in essence,
only to count.

▶ The control structures of a counter program include simple sequencing and the conditional
goto statement:
if X = 0 goto G

Let us note that this model is much closer to the computer model proposed by von Neumann
than a Turing machine!

Counter Program
Example

U ← 0
Z ← 0
A: if X = 0 goto L
X ← X − 1
V ← Y + 1
V ← V − 1
B: if V = 0 goto A
V ← V − 1
Z ← Z + 1
if U = 0 goto B

input data X and Y , output data Z ; non-existent label L means end of the
program.

Counter Programs
Example

U ← 0
Z ← 0
A: if X = 0 goto L
X ← X − 1
V ← Y + 1
V ← V − 1
B: if V = 0 goto A
V ← V − 1
Z ← Z + 1
if U = 0 goto B
X Y V Z
2 3

Counter Programs
Example

U ← 0
Z ← 0
A: if X = 0 goto L
X ← X − 1
V ← Y + 1
V ← V − 1
B: if V = 0 goto A
V ← V − 1
Z ← Z + 1
if U = 0 goto B
X Y V Z
2 3 0

Counter Programs
Example

U ← 0
Z ← 0
A: if X = 0 goto L
X ← X − 1
V ← Y + 1
V ← V − 1
B: if V = 0 goto A
V ← V − 1
Z ← Z + 1
if U = 0 goto B
X Y V Z
2 3 0

Counter Programs
Example

U ← 0
Z ← 0
A: if X = 0 goto L
X ← X − 1
V ← Y + 1
V ← V − 1
B: if V = 0 goto A
V ← V − 1
Z ← Z + 1
if U = 0 goto B
X Y V Z
1 3 0

Counter Programs
Example

U ← 0
Z ← 0
A: if X = 0 goto L
X ← X − 1
V ← Y + 1
V ← V − 1
B: if V = 0 goto A
V ← V − 1
Z ← Z + 1
if U = 0 goto B
X Y V Z
1 3 4 0

Counter Programs
Example

U ← 0
Z ← 0
A: if X = 0 goto L
X ← X − 1
V ← Y + 1
V ← V − 1
B: if V = 0 goto A
V ← V − 1
Z ← Z + 1
if U = 0 goto B
X Y V Z
1 3 3 0

Counter Programs
Example

U ← 0
Z ← 0
A: if X = 0 goto L
X ← X − 1
V ← Y + 1
V ← V − 1
B: if V = 0 goto A
V ← V − 1
Z ← Z + 1
if U = 0 goto B
X Y V Z
1 3 3 0

Counter Programs
Example

U ← 0
Z ← 0
A: if X = 0 goto L
X ← X − 1
V ← Y + 1
V ← V − 1
B: if V = 0 goto A
V ← V − 1
Z ← Z + 1
if U = 0 goto B
X Y V Z
1 3 2 0

Counter Programs
Example

U ← 0
Z ← 0
A: if X = 0 goto L
X ← X − 1
V ← Y + 1
V ← V − 1
B: if V = 0 goto A
V ← V − 1
Z ← Z + 1
if U = 0 goto B
X Y V Z
1 3 2 1

Counter Programs
Example

U ← 0
Z ← 0
A: if X = 0 goto L
X ← X − 1
V ← Y + 1
V ← V − 1
B: if V = 0 goto A
V ← V − 1
Z ← Z + 1
if U = 0 goto B
X Y V Z
1 3 2 1

Counter Programs
Example

U ← 0
Z ← 0
A: if X = 0 goto L
X ← X − 1
V ← Y + 1
V ← V − 1
B: if V = 0 goto A
V ← V − 1
Z ← Z + 1
if U = 0 goto B
X Y V Z
1 3 2 1

Counter Programs
Example

U ← 0
Z ← 0
A: if X = 0 goto L
X ← X − 1
V ← Y + 1
V ← V − 1
B: if V = 0 goto A
V ← V − 1
Z ← Z + 1
if U = 0 goto B
X Y V Z
1 3 1 1

Counter Programs
Example

U ← 0
Z ← 0
A: if X = 0 goto L
X ← X − 1
V ← Y + 1
V ← V − 1
B: if V = 0 goto A
V ← V − 1
Z ← Z + 1
if U = 0 goto B
X Y V Z
1 3 1 2

Counter Programs
Example

U ← 0
Z ← 0
A: if X = 0 goto L
X ← X − 1
V ← Y + 1
V ← V − 1
B: if V = 0 goto A
V ← V − 1
Z ← Z + 1
if U = 0 goto B
X Y V Z
1 3 1 2

Counter Programs
Example

U ← 0
Z ← 0
A: if X = 0 goto L
X ← X − 1
V ← Y + 1
V ← V − 1
B: if V = 0 goto A
V ← V − 1
Z ← Z + 1
if U = 0 goto B
X Y V Z
1 3 1 2

Counter Programs
Example

U ← 0
Z ← 0
A: if X = 0 goto L
X ← X − 1
V ← Y + 1
V ← V − 1
B: if V = 0 goto A
V ← V − 1
Z ← Z + 1
if U = 0 goto B
X Y V Z
1 3 0 2

Counter Programs
Example

U ← 0
Z ← 0
A: if X = 0 goto L
X ← X − 1
V ← Y + 1
V ← V − 1
B: if V = 0 goto A
V ← V − 1
Z ← Z + 1
if U = 0 goto B
X Y V Z
1 3 0 3

Counter Programs
Example

U ← 0
Z ← 0
A: if X = 0 goto L
X ← X − 1
V ← Y + 1
V ← V − 1
B: if V = 0 goto A
V ← V − 1
Z ← Z + 1
if U = 0 goto B
X Y V Z
1 3 0 3

Counter Programs
Example

U ← 0
Z ← 0
A: if X = 0 goto L
X ← X − 1
V ← Y + 1
V ← V − 1
B: if V = 0 goto A
V ← V − 1
Z ← Z + 1
if U = 0 goto B
X Y V Z
1 3 0 3

Counter Programs
Example

U ← 0
Z ← 0
A: if X = 0 goto L
X ← X − 1
V ← Y + 1
V ← V − 1
B: if V = 0 goto A
V ← V − 1
Z ← Z + 1
if U = 0 goto B
X Y V Z
1 3 0 3

Counter Programs
Example

U ← 0
Z ← 0
A: if X = 0 goto L
X ← X − 1
V ← Y + 1
V ← V − 1
B: if V = 0 goto A
V ← V − 1
Z ← Z + 1
if U = 0 goto B
X Y V Z
0 3 0 3

Counter Programs
Example

U ← 0
Z ← 0
A: if X = 0 goto L
X ← X − 1
V ← Y + 1
V ← V − 1
B: if V = 0 goto A
V ← V − 1
Z ← Z + 1
if U = 0 goto B
X Y V Z
0 3 4 3

Counter Programs
Example

U ← 0
Z ← 0
A: if X = 0 goto L
X ← X − 1
V ← Y + 1
V ← V − 1
B: if V = 0 goto A
V ← V − 1
Z ← Z + 1
if U = 0 goto B
X Y V Z
0 3 3 3

Counter Programs
Example

U ← 0
Z ← 0
A: if X = 0 goto L
X ← X − 1
V ← Y + 1
V ← V − 1
B: if V = 0 goto A
V ← V − 1
Z ← Z + 1
if U = 0 goto B
X Y V Z
0 3 3 3

Counter Programs
Example

U ← 0
Z ← 0
A: if X = 0 goto L
X ← X − 1
V ← Y + 1
V ← V − 1
B: if V = 0 goto A
V ← V − 1
Z ← Z + 1
if U = 0 goto B
X Y V Z
0 3 2 3

Counter Programs
Example

U ← 0
Z ← 0
A: if X = 0 goto L
X ← X − 1
V ← Y + 1
V ← V − 1
B: if V = 0 goto A
V ← V − 1
Z ← Z + 1
if U = 0 goto B
X Y V Z
0 3 2 4

Counter Programs
Example

U ← 0
Z ← 0
A: if X = 0 goto L
X ← X − 1
V ← Y + 1
V ← V − 1
B: if V = 0 goto A
V ← V − 1
Z ← Z + 1
if U = 0 goto B
X Y V Z
0 3 2 4

Counter Programs
Example

U ← 0
Z ← 0
A: if X = 0 goto L
X ← X − 1
V ← Y + 1
V ← V − 1
B: if V = 0 goto A
V ← V − 1
Z ← Z + 1
if U = 0 goto B
X Y V Z
0 3 2 4

Counter Programs
Example

U ← 0
Z ← 0
A: if X = 0 goto L
X ← X − 1
V ← Y + 1
V ← V − 1
B: if V = 0 goto A
V ← V − 1
Z ← Z + 1
if U = 0 goto B
X Y V Z
0 3 1 4

Counter Programs
Example

U ← 0
Z ← 0
A: if X = 0 goto L
X ← X − 1
V ← Y + 1
V ← V − 1
B: if V = 0 goto A
V ← V − 1
Z ← Z + 1
if U = 0 goto B
X Y V Z
0 3 1 5

Counter Programs
Example

U ← 0
Z ← 0
A: if X = 0 goto L
X ← X − 1
V ← Y + 1
V ← V − 1
B: if V = 0 goto A
V ← V − 1
Z ← Z + 1
if U = 0 goto B
X Y V Z
0 3 1 5

Counter Programs
Example

U ← 0
Z ← 0
A: if X = 0 goto L
X ← X − 1
V ← Y + 1
V ← V − 1
B: if V = 0 goto A
V ← V − 1
Z ← Z + 1
if U = 0 goto B
X Y V Z
0 3 1 5

Counter Programs
Example

U ← 0
Z ← 0
A: if X = 0 goto L
X ← X − 1
V ← Y + 1
V ← V − 1
B: if V = 0 goto A
V ← V − 1
Z ← Z + 1
if U = 0 goto B
X Y V Z
0 3 0 5

Counter Programs
Example

U ← 0
Z ← 0
A: if X = 0 goto L
X ← X − 1
V ← Y + 1
V ← V − 1
B: if V = 0 goto A
V ← V − 1
Z ← Z + 1
if U = 0 goto B
X Y V Z
0 3 0 6

Counter Programs
Example

U ← 0
Z ← 0
A: if X = 0 goto L
X ← X − 1
V ← Y + 1
V ← V − 1
B: if V = 0 goto A
V ← V − 1
Z ← Z + 1
if U = 0 goto B
X Y V Z
0 3 0 6

Counter Programs
Example

U ← 0
Z ← 0
A: if X = 0 goto L
X ← X − 1
V ← Y + 1
V ← V − 1
B: if V = 0 goto A
V ← V − 1
Z ← Z + 1
if U = 0 goto B
X Y V Z
0 3 0 6

Counter Programs
Example

U ← 0
Z ← 0
A: if X = 0 goto L
X ← X − 1
V ← Y + 1
V ← V − 1
B: if V = 0 goto A
V ← V − 1
Z ← Z + 1
if U = 0 goto B
X Y V Z
0 3 0 6

Counter Programs
Example

U ← 0
Z ← 0
A: if X = 0 goto L
X ← X − 1
V ← Y + 1
V ← V − 1
B: if V = 0 goto A
V ← V − 1
Z ← Z + 1
if U = 0 goto B
X Y V Z
0 3 0 6

End

Counter program

It can be proved that the counter program can simulate Turing machine and that
the Turing machine can simulate the counter program.

	Simplifying data
	Variables and arrays
	Trees
	The thesis

	Simplifying Control
	The thesis

	The Turing machine
	The Turing Machine: The Example
	The Turing Machine: The Example
	The Turing Machine: Variants

	The Church/Turing Thesis
	Counter Programs

