
Software
ver. 14 z drobnymi modyfikacjami!

Wojciech Myszka

2023-11-06 17:48:24 +0100

What determines the speed of computers?

1. Clock frequency: Intel, AMD. Now about 4+ GHz (max 5.7 GHz)
2. Memory “speed”.
3. Word length:

▶ short word
▶ simpler design
▶ faster transfer to memory (less data!)
▶ longer processing of extended data

▶ long word
▶ more complicated design
▶ wasting of resources (sometimes)
▶ faster operation on long numbers

4. Computer design
▶ number of arithmetic units
▶ way of performing arithmetic operations

https://en.wikipedia.org/wiki/Comparison_of_Intel_processors
https://en.wikipedia.org/wiki/Table_of_AMD_processors

What determines the speed of computers?

1. Clock frequency: Intel, AMD. Now about 4+ GHz (max 5.7 GHz)

2. Memory “speed”.
3. Word length:

▶ short word
▶ simpler design
▶ faster transfer to memory (less data!)
▶ longer processing of extended data

▶ long word
▶ more complicated design
▶ wasting of resources (sometimes)
▶ faster operation on long numbers

4. Computer design
▶ number of arithmetic units
▶ way of performing arithmetic operations

https://en.wikipedia.org/wiki/Comparison_of_Intel_processors
https://en.wikipedia.org/wiki/Table_of_AMD_processors

What determines the speed of computers?

1. Clock frequency: Intel, AMD. Now about 4+ GHz (max 5.7 GHz)
2. Memory “speed”.

3. Word length:
▶ short word

▶ simpler design
▶ faster transfer to memory (less data!)
▶ longer processing of extended data

▶ long word
▶ more complicated design
▶ wasting of resources (sometimes)
▶ faster operation on long numbers

4. Computer design
▶ number of arithmetic units
▶ way of performing arithmetic operations

https://en.wikipedia.org/wiki/Comparison_of_Intel_processors
https://en.wikipedia.org/wiki/Table_of_AMD_processors

What determines the speed of computers?

1. Clock frequency: Intel, AMD. Now about 4+ GHz (max 5.7 GHz)
2. Memory “speed”.
3. Word length:

▶ short word
▶ simpler design
▶ faster transfer to memory (less data!)
▶ longer processing of extended data

▶ long word
▶ more complicated design
▶ wasting of resources (sometimes)
▶ faster operation on long numbers

4. Computer design
▶ number of arithmetic units
▶ way of performing arithmetic operations

https://en.wikipedia.org/wiki/Comparison_of_Intel_processors
https://en.wikipedia.org/wiki/Table_of_AMD_processors

What determines the speed of computers?

1. Clock frequency: Intel, AMD. Now about 4+ GHz (max 5.7 GHz)
2. Memory “speed”.
3. Word length:

▶ short word
▶ simpler design
▶ faster transfer to memory (less data!)
▶ longer processing of extended data

▶ long word
▶ more complicated design
▶ wasting of resources (sometimes)
▶ faster operation on long numbers

4. Computer design
▶ number of arithmetic units
▶ way of performing arithmetic operations

https://en.wikipedia.org/wiki/Comparison_of_Intel_processors
https://en.wikipedia.org/wiki/Table_of_AMD_processors

What determines the speed of computers?

1. Clock frequency: Intel, AMD. Now about 4+ GHz (max 5.7 GHz)
2. Memory “speed”.
3. Word length:

▶ short word
▶ simpler design
▶ faster transfer to memory (less data!)
▶ longer processing of extended data

▶ long word
▶ more complicated design
▶ wasting of resources (sometimes)
▶ faster operation on long numbers

4. Computer design
▶ number of arithmetic units
▶ way of performing arithmetic operations

https://en.wikipedia.org/wiki/Comparison_of_Intel_processors
https://en.wikipedia.org/wiki/Table_of_AMD_processors

What determines the speed of computers?

1. Clock frequency: Intel, AMD. Now about 4+ GHz (max 5.7 GHz)
2. Memory “speed”.
3. Word length:

▶ short word
▶ simpler design
▶ faster transfer to memory (less data!)
▶ longer processing of extended data

▶ long word
▶ more complicated design
▶ wasting of resources (sometimes)
▶ faster operation on long numbers

4. Computer design
▶ number of arithmetic units
▶ way of performing arithmetic operations

https://en.wikipedia.org/wiki/Comparison_of_Intel_processors
https://en.wikipedia.org/wiki/Table_of_AMD_processors

Pipelining
Pipeline

IF— indtruction fetch, ID— instruction decode, EX— execution,MEM— storing results
into cache,WB—writing back (from cache to memory)

Pipelining
Pipeline

IF— indtruction fetch, ID— instruction decode, EX— execution,MEM— storing results
into cache,WB—writing back (from cache to memory)

Pipelining
Pipeline + two processors/cores

IF— indtruction fetch, ID— instruction decode, EX— execution,MEM— storing results into cache,WB—writing back (from cache to memory)

What else determines the speed of computing?
Vector processors

1. Vector (array) processor has instructions allowing to perform operations on one
dimensional arrays of data. This means that at the same time it performs several
operations at once.

2. This is called SIMD— Single Instruction, Multiple Data
3. Basis of a “supercomputers” from 80 and 90.
4. In 2000, IBM, Toshiba and Sony worked together on the development of the Cell

processor containing one scalar processor (the inverse of a vector processor) and
eight vector processors, which it was used (among other things) in the PlayStation 3.

Various abbreviations

1. CISC

Complex Instruction Set Computer
2. RISC Reduced Instruction Set Computer
3. VLIW Very Long Instruction Word
4. EPIC Explicitly Parallel Instruction Computing

Homework: Read about this abbreviations!

Various abbreviations

1. CISC Complex Instruction Set Computer
2. RISC

Reduced Instruction Set Computer
3. VLIW Very Long Instruction Word
4. EPIC Explicitly Parallel Instruction Computing

Homework: Read about this abbreviations!

Various abbreviations

1. CISC Complex Instruction Set Computer
2. RISC Reduced Instruction Set Computer
3. VLIW

Very Long Instruction Word
4. EPIC Explicitly Parallel Instruction Computing

Homework: Read about this abbreviations!

Various abbreviations

1. CISC Complex Instruction Set Computer
2. RISC Reduced Instruction Set Computer
3. VLIW Very Long Instruction Word
4. EPIC

Explicitly Parallel Instruction Computing

Homework: Read about this abbreviations!

Various abbreviations

1. CISC Complex Instruction Set Computer
2. RISC Reduced Instruction Set Computer
3. VLIW Very Long Instruction Word
4. EPIC Explicitly Parallel Instruction Computing

Homework: Read about this abbreviations!

Various abbreviations

1. CISC Complex Instruction Set Computer
2. RISC Reduced Instruction Set Computer
3. VLIW Very Long Instruction Word
4. EPIC Explicitly Parallel Instruction Computing

Homework: Read about this abbreviations!

Various abbreviations

1. x86 The most popular architecture of PC computers (32 bit version is now obsolete)

2. x86-64 64-bit architecture introduced by AMD (extension of x86)
3. ARM a family of reduced instruction set computing (RISC) architectures for computer

processors, configured for various environments.
Apple new processors (M1, M2) belongs to this family.
ARM means Advanced RISC Machines

4. RISC-V is an open standard instruction set architecture (ISA) based on established
reduced instruction set computer (RISC) principles. Unlike most other ISA designs,
RISC-V is provided under royalty-free open-source licenses. Becomes more and more
popular

5. CUDA (Compute Unified Device Architecture) is a parallel computing platform and
application programming interface (API) model created by Nvidia.

Various abbreviations

1. x86 The most popular architecture of PC computers (32 bit version is now obsolete)
2. x86-64 64-bit architecture introduced by AMD (extension of x86)

3. ARM a family of reduced instruction set computing (RISC) architectures for computer
processors, configured for various environments.
Apple new processors (M1, M2) belongs to this family.
ARM means Advanced RISC Machines

4. RISC-V is an open standard instruction set architecture (ISA) based on established
reduced instruction set computer (RISC) principles. Unlike most other ISA designs,
RISC-V is provided under royalty-free open-source licenses. Becomes more and more
popular

5. CUDA (Compute Unified Device Architecture) is a parallel computing platform and
application programming interface (API) model created by Nvidia.

Various abbreviations

1. x86 The most popular architecture of PC computers (32 bit version is now obsolete)
2. x86-64 64-bit architecture introduced by AMD (extension of x86)
3. ARM a family of reduced instruction set computing (RISC) architectures for computer

processors, configured for various environments.
Apple new processors (M1, M2) belongs to this family.
ARM means Advanced RISC Machines

4. RISC-V is an open standard instruction set architecture (ISA) based on established
reduced instruction set computer (RISC) principles. Unlike most other ISA designs,
RISC-V is provided under royalty-free open-source licenses. Becomes more and more
popular

5. CUDA (Compute Unified Device Architecture) is a parallel computing platform and
application programming interface (API) model created by Nvidia.

Various abbreviations

1. x86 The most popular architecture of PC computers (32 bit version is now obsolete)
2. x86-64 64-bit architecture introduced by AMD (extension of x86)
3. ARM a family of reduced instruction set computing (RISC) architectures for computer

processors, configured for various environments.
Apple new processors (M1, M2) belongs to this family.
ARM means Advanced RISC Machines

4. RISC-V is an open standard instruction set architecture (ISA) based on established
reduced instruction set computer (RISC) principles. Unlike most other ISA designs,
RISC-V is provided under royalty-free open-source licenses. Becomes more and more
popular

5. CUDA (Compute Unified Device Architecture) is a parallel computing platform and
application programming interface (API) model created by Nvidia.

Various abbreviations

1. x86 The most popular architecture of PC computers (32 bit version is now obsolete)
2. x86-64 64-bit architecture introduced by AMD (extension of x86)
3. ARM a family of reduced instruction set computing (RISC) architectures for computer

processors, configured for various environments.
Apple new processors (M1, M2) belongs to this family.
ARM means Advanced RISC Machines

4. RISC-V is an open standard instruction set architecture (ISA) based on established
reduced instruction set computer (RISC) principles. Unlike most other ISA designs,
RISC-V is provided under royalty-free open-source licenses. Becomes more and more
popular

5. CUDA (Compute Unified Device Architecture) is a parallel computing platform and
application programming interface (API) model created by Nvidia.

NVIDIA CUDA

Homework

Read something about all this mentioned acronyms.

Why does computer work?

1. What is a computer?

2. Kind of a calculator (it has an arithmetic unit).
3. it has a memory. . .
4. . . .but what turns it into operation?
5. Program

?

Why does computer work?

1. What is a computer?
2. Kind of a calculator (it has an arithmetic unit).

3. it has a memory. . .
4. . . .but what turns it into operation?
5. Program

?

Why does computer work?

1. What is a computer?
2. Kind of a calculator (it has an arithmetic unit).
3. it has a memory. . .

4. . . .but what turns it into operation?
5. Program

?

Why does computer work?

1. What is a computer?
2. Kind of a calculator (it has an arithmetic unit).
3. it has a memory. . .
4. . . .but what turns it into operation?

5. Program

?

Why does computer work?

1. What is a computer?
2. Kind of a calculator (it has an arithmetic unit).
3. it has a memory. . .
4. . . .but what turns it into operation?
5. Program

?

Why does computer work?

1. What is a computer?
2. Kind of a calculator (it has an arithmetic unit).
3. it has a memory. . .
4. . . .but what turns it into operation?
5. Program

?

Why does computer work?

1. What is a computer?
2. Kind of a calculator (it has an arithmetic unit).
3. it has a memory. . .
4. . . .but what turns it into operation?
5. Program?

Turn on the computer. . .
. . . and what happens?

1. When everything is OK processor automatically tries to execute the program from a
specified part of the memory.

2. But, theremust be some program (code) in this memory. . .
3. Typically, in this memory area is a “permanent memory” (Read-Only Memory—

ROM, NVRAM). . .
4. . . . containing program called BIOS (Basic Input Output System) replaced now by

Unified Extensible Firmware Interface (UEFI).
5. BIOS/UEFI checks all components of the computer. . .
6. UEFI checks integrity of the Operating System . . .
7. . . . and loads an Operating System from the disc.
8. Operating System runs applications.

Turn on the computer. . .
. . . and what happens?

1. When everything is OK processor automatically tries to execute the program from a
specified part of the memory.

2. But, theremust be some program (code) in this memory. . .

3. Typically, in this memory area is a “permanent memory” (Read-Only Memory—
ROM, NVRAM). . .

4. . . . containing program called BIOS (Basic Input Output System) replaced now by
Unified Extensible Firmware Interface (UEFI).

5. BIOS/UEFI checks all components of the computer. . .
6. UEFI checks integrity of the Operating System . . .
7. . . . and loads an Operating System from the disc.
8. Operating System runs applications.

Turn on the computer. . .
. . . and what happens?

1. When everything is OK processor automatically tries to execute the program from a
specified part of the memory.

2. But, theremust be some program (code) in this memory. . .
3. Typically, in this memory area is a “permanent memory” (Read-Only Memory—

ROM, NVRAM). . .

4. . . . containing program called BIOS (Basic Input Output System) replaced now by
Unified Extensible Firmware Interface (UEFI).

5. BIOS/UEFI checks all components of the computer. . .
6. UEFI checks integrity of the Operating System . . .
7. . . . and loads an Operating System from the disc.
8. Operating System runs applications.

Turn on the computer. . .
. . . and what happens?

1. When everything is OK processor automatically tries to execute the program from a
specified part of the memory.

2. But, theremust be some program (code) in this memory. . .
3. Typically, in this memory area is a “permanent memory” (Read-Only Memory—

ROM, NVRAM). . .
4. . . . containing program called BIOS (Basic Input Output System) replaced now by

Unified Extensible Firmware Interface (UEFI).

5. BIOS/UEFI checks all components of the computer. . .
6. UEFI checks integrity of the Operating System . . .
7. . . . and loads an Operating System from the disc.
8. Operating System runs applications.

Turn on the computer. . .
. . . and what happens?

1. When everything is OK processor automatically tries to execute the program from a
specified part of the memory.

2. But, theremust be some program (code) in this memory. . .
3. Typically, in this memory area is a “permanent memory” (Read-Only Memory—

ROM, NVRAM). . .
4. . . . containing program called BIOS (Basic Input Output System) replaced now by

Unified Extensible Firmware Interface (UEFI).
5. BIOS/UEFI checks all components of the computer. . .

6. UEFI checks integrity of the Operating System . . .
7. . . . and loads an Operating System from the disc.
8. Operating System runs applications.

Turn on the computer. . .
. . . and what happens?

1. When everything is OK processor automatically tries to execute the program from a
specified part of the memory.

2. But, theremust be some program (code) in this memory. . .
3. Typically, in this memory area is a “permanent memory” (Read-Only Memory—

ROM, NVRAM). . .
4. . . . containing program called BIOS (Basic Input Output System) replaced now by

Unified Extensible Firmware Interface (UEFI).
5. BIOS/UEFI checks all components of the computer. . .
6. UEFI checks integrity of the Operating System . . .

7. . . . and loads an Operating System from the disc.
8. Operating System runs applications.

Turn on the computer. . .
. . . and what happens?

1. When everything is OK processor automatically tries to execute the program from a
specified part of the memory.

2. But, theremust be some program (code) in this memory. . .
3. Typically, in this memory area is a “permanent memory” (Read-Only Memory—

ROM, NVRAM). . .
4. . . . containing program called BIOS (Basic Input Output System) replaced now by

Unified Extensible Firmware Interface (UEFI).
5. BIOS/UEFI checks all components of the computer. . .
6. UEFI checks integrity of the Operating System . . .
7. . . . and loads an Operating System from the disc.

8. Operating System runs applications.

Turn on the computer. . .
. . . and what happens?

1. When everything is OK processor automatically tries to execute the program from a
specified part of the memory.

2. But, theremust be some program (code) in this memory. . .
3. Typically, in this memory area is a “permanent memory” (Read-Only Memory—

ROM, NVRAM). . .
4. . . . containing program called BIOS (Basic Input Output System) replaced now by

Unified Extensible Firmware Interface (UEFI).
5. BIOS/UEFI checks all components of the computer. . .
6. UEFI checks integrity of the Operating System . . .
7. . . . and loads an Operating System from the disc.
8. Operating System runs applications.

BIOS

BIOS/UEFI

Programs

▶ Software (and its quality) influences the effective speed of computers.
▶ What is computer programming?

Are the programming skills important?
Programming languages

Simple tasks
The sum of numbers

The task is that we have to add, say, 1000 numbers (provided on paper). How to do it:

▶ “by hand”?
▶ by hand with help of a calculator?
▶ using some application?
▶ using a self-made computer program?

Simple tasks
The sum of numbers

The task is that we have to add, say, 1000 numbers (provided on paper). How to do it:
▶ “by hand”?

▶ by hand with help of a calculator?
▶ using some application?
▶ using a self-made computer program?

Simple tasks
The sum of numbers

The task is that we have to add, say, 1000 numbers (provided on paper). How to do it:
▶ “by hand”?
▶ by hand with help of a calculator?

▶ using some application?
▶ using a self-made computer program?

Simple tasks
The sum of numbers

The task is that we have to add, say, 1000 numbers (provided on paper). How to do it:
▶ “by hand”?
▶ by hand with help of a calculator?
▶ using some application?

▶ using a self-made computer program?

Simple tasks
The sum of numbers

The task is that we have to add, say, 1000 numbers (provided on paper). How to do it:
▶ “by hand”?
▶ by hand with help of a calculator?
▶ using some application?
▶ using a self-made computer program?

More advanced technical problem
Period of oscillation of a pendulum

is given by the equation

T = 2π

√
l
g

▶ Let say that we have 100 values of l

▶ by hand?? (difficult without a calculator)
▶ develop an application?
▶ use a spreadsheet?
▶ plot the function, using, for example, Gnuplot?

More advanced technical problem
Period of oscillation of a pendulum

is given by the equation

T = 2π

√
l
g

▶ Let say that we have 100 values of l

▶ by hand?? (difficult without a calculator)
▶ develop an application?
▶ use a spreadsheet?
▶ plot the function, using, for example, Gnuplot?

More advanced technical problem
Period of oscillation of a pendulum

is given by the equation

T = 2π

√
l
g

▶ Let say that we have 100 values of l
▶ by hand?? (difficult without a calculator)

▶ develop an application?
▶ use a spreadsheet?
▶ plot the function, using, for example, Gnuplot?

More advanced technical problem
Period of oscillation of a pendulum

is given by the equation

T = 2π

√
l
g

▶ Let say that we have 100 values of l
▶ by hand?? (difficult without a calculator)
▶ develop an application?

▶ use a spreadsheet?
▶ plot the function, using, for example, Gnuplot?

More advanced technical problem
Period of oscillation of a pendulum

is given by the equation

T = 2π

√
l
g

▶ Let say that we have 100 values of l
▶ by hand?? (difficult without a calculator)
▶ develop an application?
▶ use a spreadsheet?

▶ plot the function, using, for example, Gnuplot?

More advanced technical problem
Period of oscillation of a pendulum

is given by the equation

T = 2π

√
l
g

▶ Let say that we have 100 values of l
▶ by hand?? (difficult without a calculator)
▶ develop an application?
▶ use a spreadsheet?
▶ plot the function, using, for example, Gnuplot?

Plot

0 2 4 6 8 10

0

2

4

6

Maze
Problem statement

▶ we have the simplest maze

▶ there is an “entry”
▶ there is an “exit”
▶ you have to find a way from the entry to the exit. . .

Maze
Problem statement

▶ we have the simplest maze
▶ there is an “entry”

▶ there is an “exit”
▶ you have to find a way from the entry to the exit. . .

Maze
Problem statement

▶ we have the simplest maze
▶ there is an “entry”
▶ there is an “exit”

▶ you have to find a way from the entry to the exit. . .

Maze
Problem statement

▶ we have the simplest maze
▶ there is an “entry”
▶ there is an “exit”
▶ you have to find a way from the entry to the exit. . .

More complicated problem
Maze

Programming language: Google Blockly

There are two versions:
1. Blockly Games

2. Google Blockly is a visual programming editor.

▶ Can be used on-line: https://blockly.games/
▶ Can be downloaded to ones computer

https://github.com/google/blockly-games/wiki/Offline
▶ unpack in some directory
▶ and find file /blockly-read-only/demos/index.html in that directory and open it

in web browser.

https://blockly.games/
https://blockly-demo.appspot.com/static/demos/code/index.html
https://blockly.games/
https://github.com/google/blockly-games/wiki/Offline

Programming language: Google Blockly

There are two versions:
1. Blockly Games

2. Google Blockly is a visual programming editor.

▶ Can be used on-line: https://blockly.games/
▶ Can be downloaded to ones computer

https://github.com/google/blockly-games/wiki/Offline
▶ unpack in some directory
▶ and find file /blockly-read-only/demos/index.html in that directory and open it

in web browser.

https://blockly.games/
https://blockly-demo.appspot.com/static/demos/code/index.html
https://blockly.games/
https://github.com/google/blockly-games/wiki/Offline

Maze
How to solve the maze?

▶ You can direct Pegman (tell the way) to find the exit (example in the browser).

▶ Random turns: go to crossing and randomly choose a direction.
▶ Homework: how to realize this strategy in Blockly?
▶ Left-/right- hand walk: follow the wall touching it using your left/right hand.

Maze
How to solve the maze?

▶ You can direct Pegman (tell the way) to find the exit (example in the browser).
▶ Random turns: go to crossing and randomly choose a direction.

▶ Homework: how to realize this strategy in Blockly?
▶ Left-/right- hand walk: follow the wall touching it using your left/right hand.

Maze
How to solve the maze?

▶ You can direct Pegman (tell the way) to find the exit (example in the browser).
▶ Random turns: go to crossing and randomly choose a direction.
▶ Homework: how to realize this strategy in Blockly?

▶ Left-/right- hand walk: follow the wall touching it using your left/right hand.

Maze
How to solve the maze?

▶ You can direct Pegman (tell the way) to find the exit (example in the browser).
▶ Random turns: go to crossing and randomly choose a direction.
▶ Homework: how to realize this strategy in Blockly?
▶ Left-/right- hand walk: follow the wall touching it using your left/right hand.

Greatest Common Divisor
Problem statement

▶ There are two natural (whole) numbersm and n, such thatm > 0, n > 0.

▶ We are searching for x which divides bothm and n and is the greatest of all such
dividers. In other words: the largest positive integer that divides the numbers
without a remainder.

▶ What the reminder is?

Greatest Common Divisor
Problem statement

▶ There are two natural (whole) numbersm and n, such thatm > 0, n > 0.
▶ We are searching for x which divides bothm and n and is the greatest of all such

dividers. In other words: the largest positive integer that divides the numbers
without a remainder.

▶ What the reminder is?

Greatest Common Divisor
Problem statement

▶ There are two natural (whole) numbersm and n, such thatm > 0, n > 0.
▶ We are searching for x which divides bothm and n and is the greatest of all such

dividers. In other words: the largest positive integer that divides the numbers
without a remainder.

▶ What the reminder is?

Greatest Common Divisor
The simple algorithm “from the definition”

▶ find all divisors of the first number.

▶ find all divisors of the second number.
▶ find common numbers (divisors)
▶ find the greatest one.

Greatest Common Divisor
The simple algorithm “from the definition”

▶ find all divisors of the first number.
▶ find all divisors of the second number.

▶ find common numbers (divisors)
▶ find the greatest one.

Greatest Common Divisor
The simple algorithm “from the definition”

▶ find all divisors of the first number.
▶ find all divisors of the second number.
▶ find common numbers (divisors)

▶ find the greatest one.

Greatest Common Divisor
The simple algorithm “from the definition”

▶ find all divisors of the first number.
▶ find all divisors of the second number.
▶ find common numbers (divisors)
▶ find the greatest one.

Find all divisors

▶ check if 1 divides n
▶ check if 2 divides n
▶ . . .
▶ check if n− 1 divides n

Finding all divider
Can we simplify this

▶ It is enough to start from 2 (all numbers are divided by 1)

▶ When stopping this procedure?
▶ It is enough to finish at

√
n (any whole number close to

√
n).

Finding all divider
Can we simplify this

▶ It is enough to start from 2 (all numbers are divided by 1)
▶ When stopping this procedure?

▶ It is enough to finish at
√
n (any whole number close to

√
n).

Finding all divider
Can we simplify this

▶ It is enough to start from 2 (all numbers are divided by 1)
▶ When stopping this procedure?
▶ It is enough to finish at

√
n (any whole number close to

√
n).

The intersection of two sets

1. Take the first object from the set N (divisors of n).

2. Check if it belongs to the setM?
3. If so, put it to the resulting set X
4. If you have not passed through all the objects in the set N, take the next element and

go to step 2.

The intersection of two sets

1. Take the first object from the set N (divisors of n).
2. Check if it belongs to the setM?

3. If so, put it to the resulting set X
4. If you have not passed through all the objects in the set N, take the next element and

go to step 2.

The intersection of two sets

1. Take the first object from the set N (divisors of n).
2. Check if it belongs to the setM?
3. If so, put it to the resulting set X

4. If you have not passed through all the objects in the set N, take the next element and
go to step 2.

The intersection of two sets

1. Take the first object from the set N (divisors of n).
2. Check if it belongs to the setM?
3. If so, put it to the resulting set X
4. If you have not passed through all the objects in the set N, take the next element and

go to step 2.

Searching for the maximum element

1. Take the first object from the set. It will be the current maximum value.
2. Are there any objects left in the set? If NO, then STOP.
3. else take the next one
4. is it greater than the current maximum value?
5. if NO, then go to step 2
6. else, it will be the current maximum value.

Searching for the maximum element

1. Take the first object from the set. It will be the current maximum value.

2. Are there any objects left in the set? If NO, then STOP.
3. else take the next one
4. is it greater than the current maximum value?
5. if NO, then go to step 2
6. else, it will be the current maximum value.

Searching for the maximum element

1. Take the first object from the set. It will be the current maximum value.
2. Are there any objects left in the set? If NO, then STOP.

3. else take the next one
4. is it greater than the current maximum value?
5. if NO, then go to step 2
6. else, it will be the current maximum value.

Searching for the maximum element

1. Take the first object from the set. It will be the current maximum value.
2. Are there any objects left in the set? If NO, then STOP.
3. else take the next one

4. is it greater than the current maximum value?
5. if NO, then go to step 2
6. else, it will be the current maximum value.

Searching for the maximum element

1. Take the first object from the set. It will be the current maximum value.
2. Are there any objects left in the set? If NO, then STOP.
3. else take the next one
4. is it greater than the current maximum value?

5. if NO, then go to step 2
6. else, it will be the current maximum value.

Searching for the maximum element

1. Take the first object from the set. It will be the current maximum value.
2. Are there any objects left in the set? If NO, then STOP.
3. else take the next one
4. is it greater than the current maximum value?
5. if NO, then go to step 2

6. else, it will be the current maximum value.

Searching for the maximum element

1. Take the first object from the set. It will be the current maximum value.
2. Are there any objects left in the set? If NO, then STOP.
3. else take the next one
4. is it greater than the current maximum value?
5. if NO, then go to step 2
6. else, it will be the current maximum value.

Euclidean algorithm

E1. Let r be the remainder from the division ofm by n

E2. If r = 0 STOP. The solution is n.
E3. Else

m← n
n← r
Go to E1

Euclidean algorithm

E1. Let r be the remainder from the division ofm by n
E2. If r = 0 STOP. The solution is n.

E3. Else
m← n
n← r
Go to E1

Euclidean algorithm

E1. Let r be the remainder from the division ofm by n
E2. If r = 0 STOP. The solution is n.
E3. Else

m← n
n← r
Go to E1

GCD
Blockly implementation

Homework

▶ Find other variants of Euclidean algorithm. . .
▶ . . . and program it in Blockly

Algorithm B

(Binary greatest common divisor algorithm)
1. k← 0
2. while u is even and v is even

u← u/2
v← v/2
k← k+ 1
now u or v (or both) are odd

3. if u is odd, let t← −v and go to step 5 else let t← u

4. (At this point t is even and not equal 0.) Let t← t/2

5. If t is even then go to step 4
6. If t > 0 then let u← t else let v← −t.
7. Let t← u− v. If t ̸= 0 then goto 4. Else, the result is u · 2k

Homework?

Program Algorithm B in Blockly. . . ?

Ups. . . probably to difficult. . . !

Solve it for chosen u and v (both less then 1000) “by hand”: using paper and pencil.

Homework?

Program Algorithm B in Blockly. . . ?

Ups. . . probably to difficult. . . !

Solve it for chosen u and v (both less then 1000) “by hand”: using paper and pencil.

Homework?

Program Algorithm B in Blockly. . . ?

Ups. . . probably to difficult. . . !

Solve it for chosen u and v (both less then 1000) “by hand”: using paper and pencil.

Bibliography

Suits D.B., Playing with mazes, URL
https://davidsuits.net/PlayingWithMazes.pdf 1994.

Pullen W.D.,Maze classification, URL
http://www.astrolog.org/labyrnth/algrithm.htm 2015.

Pullen W.D., Technical maze terms, URL
http://www.astrolog.org/labyrnth/glossary.htm 2015.

Pullen W.D.,Making difficult mazes, URL
http://www.astrolog.org/labyrnth/psych.htm 2015.

https://davidsuits.net/PlayingWithMazes.pdf
http://www.astrolog.org/labyrnth/algrithm.htm
http://www.astrolog.org/labyrnth/glossary.htm
http://www.astrolog.org/labyrnth/psych.htm

	Speed of computers
	Computer architecture
	Computer programming
	Algorithms
	Simple tasks

	Programming language: Google Blockly
	Greatest Common Divisor
	Euclidean algorithm
	Algorithm B

