
Computer architecture
ver. 17 z drobnymi modyfikacjami!

Wojciech Myszka

2023-10-30 16:11:55 +0100



Punched cards



Some history

In the first half of the 20th Century, IBM’s flagship product was the Tabulator, which
is pretty much just a big adding machine. Beginning about 1930, IBM began to
produce machines that could also multiply, and eventually divide, as well as add and
subtract. These were called Calculators and they were used primarily for engineering
and scientific applications.



IBM 601 Calculator
First IBM (electro-mechanical) calculator that could multiply.

1931

http://www.columbia.edu/cu/computinghistory/601.html


The idea of computing

+
B

A

C

D
+

× (A + B) × (C + D)

A +
B

C +
D

▶ A, B, C , D — data: “stream” (file/deck) of punched cards
▶ A + B, C + D — partial result: (file/deck) of punched cards
▶ (A + B)(C + D) — result: the stream of punched cards



IBM 601 Calculator, cont.

The IBM 601 Multiplying Punch read two factors up to eight decimal digits in length
from a card and punched their product onto a blank field of the same card. It could
subtract and add as well as multiply. It had no printing capacity, so was generally used
as an offline assistant for a tabulator or accounting machine. The 601 that was
delivered to Eckert’s lab in 1933 was a special model “capable of doing the direct
interpolation, a very unusual feature, specially designed for Eckert by one of IBM’s top
engineers at Endicott [NY]”. Eckert went a step further by connecting the 601 to a
Type 285 Tabulator and a Type 016 Duplicating Punch through a calculation control
switch of his own design, forming the first machine to perform complex scientific
computations automatically.
http://www.columbia.edu/cu/computinghistory/601.html

http://www.columbia.edu/cu/computinghistory/601.html


Early digital (electro-mechanical) computers. . .

. . . follow this idea, as well.



Project Manhattan

Richard P. Feynman used to administer the group of “human computers” used for
performing computations for the Manhattan Project. He assisted in establishing a
system for using IBM punched cards for computation.
You can find this story on-line, described by Feynman.
This was described in the book Surely You’re Joking, Mr. Feynman! by Richard
Feynman and Ralph Leighton.

http://calteches.library.caltech.edu/34/3/FeynmanLosAlamos.htm


John von Neumann

1. One of the most important
computational projects in the forties
(20th century) were calculations for
the atomic bomb.

2. John von Neumann, a brilliant
mathematician, and physicist (who
was also involved in quantum
mechanics, game theory, computer
science, functional analysis ...) were
engaged in this work.

https://en.wikipedia.org/wiki/John_von_Neumann


von Neumann architecture

So-called “von Neumann architecture” (presented in First Draft of a Report on the
EDVAC) describes the architecture for a computer with subdivision of a processing unit,
a control unit, a memory, external mass storage, and input and output mechanisms.
▶ processing unit has an arithmetic logic unit and processor registers (kind of a local

storage),
▶ memory was used to store both data and instructions,
▶ control unit has an instruction register and program counter,

https://apps.udg.edu/Portal/Uploads/4150490/EDVAC.pdf
https://apps.udg.edu/Portal/Uploads/4150490/EDVAC.pdf


von Neumann architecture

Arithmetic
Logic
Unit

Control
Unit

Memory

Input Output

Accumulator



von Neumann architecture

Computer system build according to von Neuman’s architecture allows for:
▶ inputting a program from an external source to the computer’s memory,
▶ inputting data and changing them easily.

▶ In general, the data and the program residing in teh computer’s memory are
indistinguishable.

▶ Processor or strictly speaking, computer program can modify itself.
▶ The information is processed by sequential execution of program instructions.



von Neumann architecture

▶ These conditions allow for switching from the execution of one task (program) to
another without physical intervention in the structure of the system and thus
ensure its versatility.

▶ Von Neumann’s computer system does not have separate memory for storing data
and instructions. Instructions and data are encoded in the form of numbers.
Without an analysis of the program is difficult to determine whether the area of
memory contains data or instructions.

▶ The executed program can modify itself treating its own instructions (code) as
data: changing them and then executing.



Simplified diagram of a computer

Processor

Control� -

Memory

Input/Output

� -

-�

6? Bus



Simplified diagram of a computer

Processor

Control� -

Memory

Input/Output

� -

-�

6? Bus



Simplified diagram of a computer

Processor

Control� -

Memory

Input/Output

� -

-�

6? Bus



Simplified diagram of a computer

Processor

Control� -

Memory

Input/Output

� -

-�

6? Bus



Simplified diagram of a computer

Processor

Control� -

Memory

Input/Output

� -

-�

6? Bus



Simplified diagram of a computer

Processor

Control� -

Memory

Input/Output

� -

-�

6? Bus



Simplified diagram of a computer

In this model:
▶ Processor.
▶ Memory (all kinds of it: RAM, ROM, Disks, floppies, external disks, and so on).
▶ All input and output devices allowing for communication with “external word”:

keyboard, mouse, touch-pad, printer, graphic card. . .
▶ Control: all electronic devices allowing for fetching and executing program’s

instructions from the memory, and transferring instructions and data through the
bus.

▶ Bus: all connections allowing for a flow of data and control instructions.



Calculator

Display
1 2 3 +
4 5 6 −
7 8 9 ∗
0 C = ÷

▶ It is the simplest calculator: four operations only.
▶ Only keyboard (digits, operations) and display.
▶ After pressing digit keys (123) data is copied to the display.
▶ There should be some kind of a memory for storing a keyed

number. This memory on one side is connected to the
keyboard (data input) on the other to the display (data
output).

▶ Let’s modify our diagram.



Calculator

Display
1 2 3 +
4 5 6 −
7 8 9 ∗
0 C = ÷

▶ It is the simplest calculator: four operations only.

▶ Only keyboard (digits, operations) and display.
▶ After pressing digit keys (123) data is copied to the display.
▶ There should be some kind of a memory for storing a keyed

number. This memory on one side is connected to the
keyboard (data input) on the other to the display (data
output).

▶ Let’s modify our diagram.



Calculator

Display
1 2 3 +
4 5 6 −
7 8 9 ∗
0 C = ÷

▶ It is the simplest calculator: four operations only.
▶ Only keyboard (digits, operations) and display.

▶ After pressing digit keys (123) data is copied to the display.
▶ There should be some kind of a memory for storing a keyed

number. This memory on one side is connected to the
keyboard (data input) on the other to the display (data
output).

▶ Let’s modify our diagram.



Calculator

Display
1 2 3 +
4 5 6 −
7 8 9 ∗
0 C = ÷

▶ It is the simplest calculator: four operations only.
▶ Only keyboard (digits, operations) and display.
▶ After pressing digit keys (123) data is copied to the display.

▶ There should be some kind of a memory for storing a keyed
number. This memory on one side is connected to the
keyboard (data input) on the other to the display (data
output).

▶ Let’s modify our diagram.



Calculator

1
1 2 3 +
4 5 6 −
7 8 9 ∗
0 C = ÷

▶ It is the simplest calculator: four operations only.
▶ Only keyboard (digits, operations) and display.
▶ After pressing digit keys (123) data is copied to the display.

▶ There should be some kind of a memory for storing a keyed
number. This memory on one side is connected to the
keyboard (data input) on the other to the display (data
output).

▶ Let’s modify our diagram.



Calculator

12
1 2 3 +
4 5 6 −
7 8 9 ∗
0 C = ÷

▶ It is the simplest calculator: four operations only.
▶ Only keyboard (digits, operations) and display.
▶ After pressing digit keys (123) data is copied to the display.

▶ There should be some kind of a memory for storing a keyed
number. This memory on one side is connected to the
keyboard (data input) on the other to the display (data
output).

▶ Let’s modify our diagram.



Calculator

123
1 2 3 +
4 5 6 −
7 8 9 ∗
0 C = ÷

▶ It is the simplest calculator: four operations only.
▶ Only keyboard (digits, operations) and display.
▶ After pressing digit keys (123) data is copied to the display.

▶ There should be some kind of a memory for storing a keyed
number. This memory on one side is connected to the
keyboard (data input) on the other to the display (data
output).

▶ Let’s modify our diagram.



Calculator

123
1 2 3 +
4 5 6 −
7 8 9 ∗
0 C = ÷

▶ It is the simplest calculator: four operations only.
▶ Only keyboard (digits, operations) and display.
▶ After pressing digit keys (123) data is copied to the display.
▶ There should be some kind of a memory for storing a keyed

number. This memory on one side is connected to the
keyboard (data input) on the other to the display (data
output).

▶ Let’s modify our diagram.



Calculator

123
1 2 3 +
4 5 6 −
7 8 9 ∗
0 C = ÷

▶ It is the simplest calculator: four operations only.
▶ Only keyboard (digits, operations) and display.
▶ After pressing digit keys (123) data is copied to the display.
▶ There should be some kind of a memory for storing a keyed

number. This memory on one side is connected to the
keyboard (data input) on the other to the display (data
output).

▶ Let’s modify our diagram.



Calculator

Display
Accumulator

1 2 3 +
4 5 6 −
7 8 9 ∗
0 C = ÷

▶ It is a simplest calculator: four operations only: keyboard
(digits, operations) and display

▶ The first value does not disappear; there must be another
memory.

▶ All arithmetic operations have two arguments.
▶ Additional memory stores the second argument.



Calculator

Display
Accumulator

1 2 3 +
4 5 6 −
7 8 9 ∗
0 C = ÷

▶ It is a simplest calculator: four operations only: keyboard
(digits, operations) and display

▶ You can not see memory called accumulator, but probably it
exists.

▶ The first value does not disappear; there must be another
memory.

▶ All arithmetic operations have two arguments.
▶ Additional memory stores the second argument.



Calculator

Display
Accumulator

1 2 3 +
4 5 6 −
7 8 9 ∗
0 C = ÷

▶ It is a simplest calculator: four operations only: keyboard
(digits, operations) and display

▶ You can not see memory called accumulator, but probably it
exists.

▶ After pressing digit keys (123) data is stored in the memory
and displayed on the display.

▶ The first value does not disappear; there must be another
memory.

▶ All arithmetic operations have two arguments.
▶ Additional memory stores the second argument.



Calculator

1
1

1 2 3 +
4 5 6 −
7 8 9 ∗
0 C = ÷

▶ It is a simplest calculator: four operations only: keyboard
(digits, operations) and display

▶ You can not see memory called accumulator, but probably it
exists.

▶ After pressing digit keys (123) data is stored in the memory
and displayed on the display.

▶ The first value does not disappear; there must be another
memory.

▶ All arithmetic operations have two arguments.
▶ Additional memory stores the second argument.



Calculator

12
12

1 2 3 +
4 5 6 −
7 8 9 ∗
0 C = ÷

▶ It is a simplest calculator: four operations only: keyboard
(digits, operations) and display

▶ You can not see memory called accumulator, but probably it
exists.

▶ After pressing digit keys (123) data is stored in the memory
and displayed on the display.

▶ The first value does not disappear; there must be another
memory.

▶ All arithmetic operations have two arguments.
▶ Additional memory stores the second argument.



Calculator

123
123

1 2 3 +
4 5 6 −
7 8 9 ∗
0 C = ÷

▶ It is a simplest calculator: four operations only: keyboard
(digits, operations) and display

▶ You can not see memory called accumulator, but probably it
exists.

▶ After pressing digit keys (123) data is stored in the memory
and displayed on the display.

▶ The first value does not disappear; there must be another
memory.

▶ All arithmetic operations have two arguments.
▶ Additional memory stores the second argument.



Calculator

123
123

1 2 3 +
4 5 6 −
7 8 9 ∗
0 C = ÷

▶ It is a simplest calculator: four operations only: keyboard
(digits, operations) and display

▶ You can not see memory called accumulator, but probably it
exists.

▶ After pressing digit keys (123) data is stored in the memory
and displayed on the display.

▶ Let’s press operation key (+)

▶ The first value does not disappear; there must be another
memory.

▶ All arithmetic operations have two arguments.
▶ Additional memory stores the second argument.



Calculator

123
123

1 2 3 +
4 5 6 −
7 8 9 ∗
0 C = ÷

▶ It is a simplest calculator: four operations only: keyboard
(digits, operations) and display

▶ You can not see memory called accumulator, but probably it
exists.

▶ After pressing digit keys (123) data is stored in the memory
and displayed on the display.

▶ Let’s press operation key (+)

▶ The first value does not disappear; there must be another
memory.

▶ All arithmetic operations have two arguments.
▶ Additional memory stores the second argument.



Calculator

123
123

1 2 3 +
4 5 6 −
7 8 9 ∗
0 C = ÷

▶ The display has not changed but pressing the digit key
erases the display and the new value appears.

▶ The first value does not disappear; there must be another
memory.

▶ All arithmetic operations have two arguments.
▶ Additional memory stores the second argument.



Calculator

123
123

1 2 3 +
4 5 6 −
7 8 9 ∗
0 C = ÷

▶ The display has not changed but pressing the digit key
erases the display and the new value appears.

▶ The first value does not disappear; there must be another
memory.

▶ All arithmetic operations have two arguments.
▶ Additional memory stores the second argument.



Calculator

123
123

1 2 3 +
4 5 6 −
7 8 9 ∗
0 C = ÷

▶ The display has not changed but pressing the digit key
erases the display and the new value appears.

▶ The first value does not disappear; there must be another
memory.

▶ All arithmetic operations have two arguments.

▶ Additional memory stores the second argument.



Calculator

123
123

1 2 3 +
4 5 6 −
7 8 9 ∗
0 C = ÷

▶ The first value does not disappear; there must be another
memory.

▶ All arithmetic operations have two arguments.
▶ Additional memory stores the second argument.



Calculator

Display
Accumulator

1 2 3 +
4 5 6 −
7 8 9 ∗
0 C = ÷

Memory

Now, probably all key elements are shown.

Operations
123
+
55
+
22
=



Calculator

Display
Accumulator

1 2 3 +
4 5 6 −
7 8 9 ∗
0 C = ÷

Memory

Operations

123
+
55
+
22
=



Calculator

123
123

1 2 3 +
4 5 6 −
7 8 9 ∗
0 C = ÷

Memory

Operations
123

+
55
+
22
=



Calculator

123
123

1 2 3 +
4 5 6 −
7 8 9 ∗
0 C = ÷

123

Operations
123
+

55
+
22
=



Calculator

55
55

1 2 3 +
4 5 6 −
7 8 9 ∗
0 C = ÷

123

Operations
123
+
55

+
22
=



Calculator

178
178

1 2 3 +
4 5 6 −
7 8 9 ∗
0 C = ÷

123

Operations
123
+
55
+

22
=



Calculator

22
22

1 2 3 +
4 5 6 −
7 8 9 ∗
0 C = ÷

178

Operations
123
+
55
+
22

=



Calculator

200
200

1 2 3 +
4 5 6 −
7 8 9 ∗
0 C = ÷

178

Operations
123
+
55
+
22
=



Processor

Instruction
Fetcher

Memory
Interface

Instruction
Decoder

Registers
to

memory

ALU



Basic operations
Arithmetic

▶ Load <memory address> copies the data from a particular cell of a RAM into the
accumulator.

▶ Store <memory address> copies the content of the accumulator to the memory.
▶ Load indirect <number> copies the number into the accumulator.
▶ Add <memory address> adds content of memory cell to the current content of

the accumulator. (We can assume that there are also operations for subtracting,
multiplying, and dividing data; but this is not always true.)
Execution of each operation, changing the register (accumulator) sets the
indicators (zero, overflow, negative).



Basic operations
Performed on bits

▶ Nagation Changes the sign of the number in the accumulator.
▶ And <memory address> logical AND (bitwise)
▶ Or <memory address>
▶ Xor <memory address> — Exclusive OR
▶ Shift_left
▶ Shift_right



Control operations

▶ Jump <memory address> the next instruction will be taken from the given address
▶ Jump_if_zero <memory address>
▶ Jump_if_negative <memory address>
▶ Jump_if_overflow <memory address>
▶ Jump_to_subroutine <memory address> very similar to the normal jump

instruction, but also saves the current state of the processor in a dedicated
memory (allowing for restoration of the state later on).



Assembler

Very simple operation:
A=B+C

We have to put the result of the sum of values stored in the memory addresses B and C
in the memory cell, having the address A.
Computer realisation:
Load B
Add C
Store A



Assembler

Very simple operation:
A=B+C
We have to put the result of the sum of values stored in the memory addresses B and C
in the memory cell, having the address A.

Computer realisation:
Load B
Add C
Store A



Assembler

Very simple operation:
A=B+C
We have to put the result of the sum of values stored in the memory addresses B and C
in the memory cell, having the address A.
Computer realisation:
Load B
Add C
Store A



Assembler
More complicated example

Z = [(A + B)(C + D)]
W

T1 = A + B
T2 = C + D
T3 = T1 ∗ T2
Z = T3/W



Assembler
More complicated example

Z = [(A + B)(C + D)]
W

T1 = A + B

T2 = C + D
T3 = T1 ∗ T2
Z = T3/W



Assembler
More complicated example

Z = [(A + B)(C + D)]
W

T1 = A + B
T2 = C + D

T3 = T1 ∗ T2
Z = T3/W



Assembler
More complicated example

Z = [(A + B)(C + D)]
W

T1 = A + B
T2 = C + D
T3 = T1 ∗ T2

Z = T3/W



Assembler
More complicated example

Z = [(A + B)(C + D)]
W

T1 = A + B
T2 = C + D
T3 = T1 ∗ T2
Z = T3/W



MARIE

MARIE — A Machine Architecture that is Really Intuitive and Easy
▶ base two positional system (2’s complement)
▶ constant word size
▶ addressing of words
▶ 4Ki bytesof main memory (12 bits)
▶ 16-bit data (16-bit word)
▶ 16-bit instruction (4-bit operation code + 12-bit address)
▶ 16-bit accumulator (AC)
▶ 16-bit instruction register (IR)
▶ 16-bit memory buffer register (MBR)
▶ 12-bit program counter (PC)
▶ 12-bit memory address register (MAR)
▶ 8-bit Input register (InREG)
▶ 8-bit output register (OutREG)



MARIE Simulator



Homework
Simple program for MARIE computer simulator (for example multiplication of two
numbers).
Additional resources:

MARIE.
https://pl.wikipedia.org/wiki/MARIE.
Only in Polish.

Student resources – essentials of computer organization and architecture, second edition.
http://samples.jbpub.com/9781284123036/9781284136852_FMxx_Print_Final.pdf.
Only Table of Contents and Preface.

Kuo-pao Yang.
MARIE: An introduction to a simple computer.
https://www2.southeastern.edu/Academics/Faculty/kyang/2013/Spring/CMPS375/ClassNotes/CMPS375ClassNotesChap04.pdf, 2013.

Linda Null and Julia Lobur.
The essentials of computer organization and architecture.
Jones and Bartlett Publishers, Sudbury, Mass., 2006.

Linda Null and Julia Lobur.
MARIE: an introduction to a simple computer.
In The essentials of computer organization and architecture. 2006.
http://samples.jbpub.com/9781449600068/00068_CH04_Null3e.pdf.

Linda Null and Julia Lobur.
A guide to the MARIE machine simulator environment, 2010.
https://cs.msutexas.edu/~simpson/wordpress/wp-content/uploads/2012/12/MarieGuide.pdf.

https://pl.wikipedia.org/wiki/MARIE
http://samples.jbpub.com/9781284123036/9781284136852_FMxx_Print_Final.pdf
https://www2.southeastern.edu/Academics/Faculty/kyang/2013/Spring/CMPS375/ClassNotes/CMPS375ClassNotesChap04.pdf
http://samples.jbpub.com/9781449600068/00068_CH04_Null3e.pdf
https://cs.msutexas.edu/~simpson/wordpress/wp-content/uploads/2012/12/MarieGuide.pdf


Reverse Polish Notation (RPN)

Let’s see the operation
3 + 7 × 5

What is the result?

50 or 38?
Which one is correct?
But, still, there is a lot of simple calculators that are “bad?”



Reverse Polish Notation (RPN)

Let’s see the operation
3 + 7 × 5

What is the result?
50 or 38?

Which one is correct?
But, still, there is a lot of simple calculators that are “bad?”



Reverse Polish Notation (RPN)

Let’s see the operation
3 + 7 × 5

What is the result?
50 or 38?
Which one is correct?

But, still, there is a lot of simple calculators that are “bad?”



Reverse Polish Notation (RPN)

Let’s see the operation
3 + 7 × 5

What is the result?
50 or 38?
Which one is correct?
But, still, there is a lot of simple calculators that are “bad?”



“Priority” of arithmetic operations

1. power
2. multiplying and dividing
3. summing and subtracting

We can use the parentheses for changing the order of operations.

BTW, What about changing the sign?



“Priority” of arithmetic operations

1. power
2. multiplying and dividing
3. summing and subtracting

We can use the parentheses for changing the order of operations.
BTW, What about changing the sign?



Do there exist unambiguous notation?

Polish logician, Łukasiewicz, introduced “prefix notation”. Instead of writing z = x + y
he proposed notation:

+xy

Let’s note that it is very similar to writing a function of two variables:

z = f (x , y)

The sum function (+) has two arguments:

z = +(x , y)



Do there exist unambiguous notation?

Polish logician, Łukasiewicz, introduced “prefix notation”. Instead of writing z = x + y
he proposed notation:

+xy

Let’s note that it is very similar to writing a function of two variables:

z = f (x , y)

The sum function (+) has two arguments:

z = +(x , y)



Do there exist unambiguous notation?

Polish logician, Łukasiewicz, introduced “prefix notation”. Instead of writing z = x + y
he proposed notation:

+xy

Let’s note that it is very similar to writing a function of two variables:

z = f (x , y)

The sum function (+) has two arguments:

z = +(x , y)



Polish Notation

Operation 3 + 7 × 5 mening 3 + (7 × 5) we can note:

+ ×7 5︸ ︷︷ ︸
35

3

︸ ︷︷ ︸
38



Reverse Polish Notation

For some practical reasons we use “postfix notation,” writing the operation (operator)
after its arguments:

xy+

We call this notation Reverse Polish Notation (RPN)
So we can write this operation like this:

7 5 × 3+

and a more complicated example, as:

A B + C D + ×W /



Reverse Polish Notation: Stack

Practical realization of this operation

A B + C D + ×W /

requires a stack and additional operations in internal language.
▶ Push writes accumulator’s content to the stack.
▶ Pop takes value from the top of the stack and puts it in the accumulator.

The stack is, sometimes called LIFO (Last In First Out) memory. . .

The queue (aka “line”) is called FIFO (First IN First Out) memory. . .



Reverse Polish Notation: Stack

Practical realization of this operation

A B + C D + ×W /

requires a stack and additional operations in internal language.
▶ Push writes accumulator’s content to the stack.
▶ Pop takes value from the top of the stack and puts it in the accumulator.

The stack is, sometimes called LIFO (Last In First Out) memory. . .

The queue (aka “line”) is called FIFO (First IN First Out) memory. . .



Reverse Polish Notation: Stack

Practical realization of this operation

A B + C D + ×W /

requires a stack and additional operations in internal language.
▶ Push writes accumulator’s content to the stack.
▶ Pop takes value from the top of the stack and puts it in the accumulator.

The stack is, sometimes called LIFO (Last In First Out) memory. . .

The queue (aka “line”) is called FIFO (First IN First Out) memory. . .



The idea of a stack

PopPush


	Punched cards
	John von Neumann
	von Neumann architecture
	Diagram of a computer
	Calculator
	Diagram of a processor
	The basic operations performed by the computer
	Internal computer language: Assembler
	MARIE — A Machine Architecture that is Really Intuitive and Easy
	Reverse Polish Notation (RPN)
	“Priority” of arithmetic operations

