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Foreword

Main milestones in building modern computers:
1. Binary numerical system instead of decimal one

2. Replacing arithmetic operations with logical ones
3. Using two’s complement for signed number representation (suggested by von

Neumann in 1945, but widely implemented in the early sixties)
4. The sign (leftmost bit) is treated as a data in all operations.

Problems:
▶ limited number of bits for storing values
▶ 8, 16, 32, 64, 128,. . .
▶ when the result of arithmetic operation does not “fit” — result is wrong!

This is called overflow.
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Part I

Basic arithmetic



How to store non-integer numbers?

In spreadsheet we can choose between:
▶ general: 1.5782
▶ number 1.58
▶ percent 157.82%
▶ currency 1.58 €
▶ scientific 1.58E+00
▶ thousand separator

This is only external representation!
What about internal representation?



Fixed point

Let’s assume 16 bits non-integer arithmetic.
1. First eight bits for the integer part
2. Second eight bits for the fractional part
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

sign integer part fractional part



Floating-point

All sixteen bits (in general 32 or 64) are used for storing
1. sign
2. fractional part x
3. exponent e

and the number is represented as sign · x · 2e

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

sign (e) exponent (x) fractional part



Why “floating-point”

Fixed-point vs Floating-point
▶ Fixed point means that we are using a fixed number of digits for remembering the

integer part of a number and a fixed number for the non-integer (fractional) part,
for example, 6 (integer) + 2 (fractional) in “financial calculator” (for home use).
So the position of the decimal point is also fixed.

▶ Floating-point means that position of the decimal point changes during
calculations: we have a fixed number of significant digits.



Fractions

In decimal numbers we have:
345.5 = 3 ∗ 102 + 4 ∗ 101 + 5 ∗ 100 + 5 ∗ 10−1

So, analogically we can write:
101011001.1(2)= 28 + 26 + 24 + 23 + 20 + 2−1

Let’s think about 3rd (binary) digit (in fractional part)
0.001(2) = 0.125(10)
To store fractions with reasonable precision this needs a lot of bits. The same when
there is a lot of digits on the left of “digital point”.



Big decimal numbers

To store big number one can use “scientific notation” (or floating-point). Instead of
writing

c = 299792458 m/s

one can write
c = 2.99792458 ∗ 108 m/s

or
c = 2.99792458 E 8 m/s

or (approximately)
c = 3 E 8 m/s

2.99792458 is sometimes called a significand (mantissa); 8 is called an exponent.



“Big” binary digits

One can use the same way
1.11(2) ∗ 27

Floating-point numbers are described in IEEE-754 Standard (established in 1985):

exponent(8-bit)sign fraction (23-bit)

31 23 0

0 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 =0.15625

All floating-point numbers are stored in, so-called, normalized form, i.e. there is only
one digit on the left side of the decimal point, and is greater than zero.



Precision

32 bits numbers
▶ “Binary” precision: 24 bits
▶ “Decimal” precision: ≈ 7.2 decimal digits (this means: mostly 7, sometimes 8, in

average 7.2).
64 bits numbers
▶ “Binary” precision: 53 bits
▶ “Decimal” precision: ≈ 15.9 decimal digits.



Range

1. 32-bits: 1.17549 E − 038 to 3.40282 E + 038
2. 64-bits: 2.22507 E − 308 to 1.79769 E + 308

Floating-point values. . .
. . . are rational numbers.
They can be expressed as the quotient or fraction p

q of two integers, a numerator p
and a non-zero denominator q.
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Floating-point arithmetic I
Let’s assume that our computer uses decimal floating-point arithmetic with three
digits.

1. Multiplication.
Easy: multiplying of mantissas and adding exponents
1.33 e+3 ∗ 1.55 e+7 = 2.0615 e+10
Next, the result has to be “shorten” (cut) to three digits: 2.06 e+10
Note: We are loosing value of 0.0015 e+10 = 15 000 000 (Yes! Fifteen millions!)
Caution: Sometimes strange happens. After the operation result is denormalised:
more then one figure on the left to the digital point. Result is normalized
(exponent is corrected), and rounded :
5.55 e+0 ∗ 6.33e+0 = 35.13 e+0 = 3.51 e+1

2. Division:
Like multiplication: mantissas divided, exponent subtracted.
1.33 e+0/9.88 e+0 = 0.134615385 e+0 = 1.35 e−1
(result normalized and rounded).



Floating-point arithmetic II

3. Addition.
A simple method to add floating-point numbers is to first represent them with the
same exponent (denormalize!)
1.22 e+0 + 3.35 e − 4 = 1.22 e+0 + 0.000335 e+0 = 1.220335 e+0 = 1.22 e+0
and next normalize and round. . .
But check carefully the result!

4. Subtraction.
Like addition.



Some problems. . .

1. The limited number of bits used to store numbers! (There are special applications
allowing for arithmetic with arbitrary numbers of digits.)

2. “Overflow” occurs when the result of arithmetic operation does not “fit” in a word
(32 or 64 bits).

3. Most of the numbers that (out of habit), are considered to be accurate, do not
have exact binary representation (0.5 is OK but 0.1 NO).

4. The last one is OK. We do remember fraction 1
3 = 0.3(3̄), but. . .
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Part II

Absolute errors theory



Basic definitions

Quantity
any mathematical constant, the result of some mathematical operations (actions), a
root of the equation solved. π is defined as the ratio of the circumference of a circle to
its diameter,

√
2 is a root of the quadratic equation x2 − 2 = 0 (or the diagonal of a

unit square).

The exact value of the quantity
value derived directly from the definition, not burdened by any errors.

The approximate value of the quantity
numerical value obtained by calculation. Typically, the calculation did not get the
exact value.
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Physical quantities

Pressure, temperature, length, concentration — are examples of physical quantities,
which often are measured.
Each measurement was burdened by an error resulting from the accuracy of the
measurement tool used.
So, for example:
▶ Quantity: the temperature at some point in the room.
▶ The exact value of the quantity: — the temperature at this particular point
▶ The approximate value of the quantity: — temperature measured with

a thermometer.



Calculations

▶ We use a computer to make some calculations.

▶ The computer gives the result (a = 5.34273343) with 8 digits after the decimal
point.

▶ Can we say that the result has all the figures correct? I mean that the difference
between the result and the exact value Is less than 0.5 × 10−8?

▶ What about the situation that the method of calculation is inaccurate?
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Mathematical pendulum

Let’s consider the mathematical pendulum.
The equation describing the period of oscillations (in seconds) looks like:

T = 2π

√
L
g (1)

where L is the length (in meters) and g is a gravitational acceleration constant.

What is the value of π?
What is the value of g?
Let’s assume, that L = 1 m.
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Mathematical pendulum

L g pi T
1 9.81 3.14 2.00504969
1 9.81 3.142 2.00632679
1 9.81 3.1416 2.00607137
1 9.81 3.14159 2.00606499
1 9.81 3.141593 2.00606690
1 9.81 3.141592654 2.00606668
1 9.80665 3.141592654 2.00640929
1 9.83332 3.141592654 2.00368655 pole
1 9.7803 3.141592654 2.00911030 equatorial
1 9.8115 3.141592654 2.00591333 Wrocław
1 9.8123 3.141592654 2.00583156 Warsaw
1 9.8105 3.141592654 2.00601556 Kraków
1 9.8337 3.141592654 2.00364783 arctic ocean



The absolute error of the approximate (measured) value of the quantity I
Let A be the exact value of the quantity, and a be its approximate value.

Absolute error
is any number ∆a satisfying the condition:

|A − a| ≤ ∆a,

i.e. such a number, that:
a − ∆a ≤ A ≤ a + ∆a.

Approximate value a and its absolute error ∆a determine an interval:

< a − ∆a; a + ∆a >,

to which belongs the exact value A.
The absolute error is not specified unambiguously!



Rough value

Rough value
If a is an approximate value of quantity A with an error ∆a then

∆aa

I will call rough value for A.



π

We know that π = 3.14159265 . . .. 3.14 is commonly used as an approximation of π in
calculations.
What is an absolute error of this approximation?

Because
3.14 − 0.0016 ≤ π ≤ 3.14 + 0.0016

or
3.1384 ≤ π ≤ 3.1416

the absolute error of this approximation is 0.0016.
Exact value of π is somewhere in the interval

< 3.1384; 3.1416 >

so we can write π =
0.0016
3.14
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“Approximate equality”

If two rough values αa and
β

b are such, that the interval < a − α; a + α > is included in
the interval < b − β; b + β > we can tell that αa is approximately equal to

β

b. We will
note this as:

αa⇒
β

b

The fact that αa is approximately equal to
β

b does not imply the opposite: that
β

b is
approximately equal to αa! (The relation is not reflexive.)



Rounding rough values

For any rough value αa and any real value b following relation is fulfilled:

αa⇒
α+|a−b|

b

this means that αa is approximately equal to
α+|a−b|

b

So, instead of using
0.000000003

3.14159265 as the π I can use simply 3 but. . .
. . . I should tell that the error is |3.14159265 − 3| + 0.000000003 = 0.141592653!

0.000000003
3.14159265⇒

0.141592653
3

Calculations are simpler but burdened with 47 197 551 times greater absolute error.
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Rounding rough values cont.

Of course, the following rounding is “better”:

0.0000027
3.14159⇒

0.0015927
3.14 ⇒

0.0016
3.14

We are rounding numbers for practical reasons: when the result has too much
significant digits. . .



Rounding rough values cont.

When a = b and β ≥ α, we can write that:

αa⇒
β

b

So
0.0015927

3.14 ⇒
0.0016
3.14

These values are approximately equal.



Rounding rules I
▶ When the result of calculations has a lot of digits we can remove (cut off) the

least significant digits — increasing rounding error.
▶ When the first of removed digits is 0, 1, 2, 3, 4 — the last remaining digit is not

changed.
▶ When the first of removed digits is 5, 6, 7, 8, 9 — we are increasing the result by

one on the least significant digit.
These rules are sometimes called “proper rounding,” but easily one can find other
rules:
▶ Round half up
▶ Round half down
▶ Round half away from zero
▶ Round half towards zero
▶ Round half to even (banker’s rounding)



Rounding rules II

▶ Round half to odd
▶ Stochastic rounding

Homework: Read about rounding rules and decide which one (of the above mentioned
rules) is “proper rounding?”



Arithmetic operations on a rough values

addition
αa +

β

b=
α+β

a + b

subtraction
αa −

β

b=
α+β

a − b
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Arithmetic operations on a rough values

multiplication
αa ·

β

b⇒
|a|β+|b|α+αβ

ab

division

αa:
β

b⇒
γa
b

where
γ =

α + | a
b |β

|b| − β
.
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.



Arithmetic operations on a rough values
Homework

Error in other mathematical operations:
1. rising to power?
2. square root?
3. trigonometric functions?
4. other. . . ?



Arithmetic operations on rough values
addition

Do we need to memorize all these rules? Better is to understand them.
1. The first “worst case”:

a − α + b − β = (a + b) − (α + β)

2. The second “worst case”:
a + α + b + β = (a + b) + (α + β)



Arithmetic operations on rough values
addition

Do we need to memorize all these rules? Better is to understand them.
1. The first “worst case”:

a − α + b − β = (a + b) − (α + β)

2. The second “worst case”:
a + α + b + β = (a + b) + (α + β)

(Homework: How it will work for subtraction? Multiplication? Division?)



Example

Calculate the value of the polynomial

w(x) = a0x4 + a1x3 + a2x2 + a3x + a4

for x = 2.1.
Let’s assume, those polynomial coefficients are exact values, and are equal to:

a0 = 2.3, a1 = 3, a2 = −4.5, a3 = 7.2, a4 = −0.1

First, we perform calculations accurate to two decimal places, and then to four.



Example, cont. I
two decimal places

x2 =
0.0
2.1 ×

0.0
2.1=

0.00
4.41

x3 =
0.00
4.41 ×

0.0
2.1=

0.000
9.261⇒

0.001
9.26

x4 =
0.001
9.26 ×

0.0
2.1⇒

0.0021
19.446 ⇒

0.0061
19.45

2.3 × x4 =
0.0
2.3 ×

0.0061
19.45 ⇒

0.01403
44.735 ⇒

0.01903
44.74 ⇒

0.02
44.74

3x3 =
0
3 ×

0.001
9.26 ⇒

0.003
27.78

−4.5x2 =
0.0

−4.5 ×
0.00
4.41⇒

0.000
−19.845⇒

0.005
−19.85

7.2x =
0.0
7.2 ×

0.0
2.1⇒

0.00
15.12

sum:
w(2.1) =

0.02
44.74 +

0.003
27.78

0.005
−19.85 +

0.00
15.12

0.0
−0.1=

0.028
67.69



Example, cont. I
four decimal places

x2 =
0.0
2.1 ×

0.0
2.1=

0.00
4.41

x3 =
0.00
4.41 ×

0.0
2.1=

0.000
9.261

x4 =
0.000
9.261 ×

0.0
2.1=

0.0000
19.4481

2.3 × x4 =
0.0
2.3 ×

0.0000
19.4481=

0.0000
44.73063⇒

0.00003
44.7306

3x3 =
0
3 ×

0.000
9.261=

0.000
27.783

−4.5x2 =
0.0

−4.5 ×
0.00
4.41=

0.000
−19.845

7.2x =
0.0
7.2 ×

0.0
2.1=

0.00
15.12

sum
w(2.1) =

0.00003
44.7306 +

0.000
27.783 −

0.000
19.845 +

0.00
15.12 −

0.0
0.1=

0.00003
67.6886



Example, cont. I

Let’s assume now that coefficients are not exact values. There are “rough values” :

a0 =
0.01
2.3, a1 =

0
3, a2 =

0.02
−4.5, a3 =

0.02
7.2, a4 =

0.01
−0.1

two decimal places

w(2.1) ⇒
0.42

67.69

four decimal places

w(2.1) ⇒
0.3678

67.6886⇒
0.3692
67.69⇒

0.37
67.69



Example, cont. II

Conclusion
When the input data are not accurate, increasing the number of significant digits (in
calculations) does not increase the accuracy of the result.
The rule is known as Garbage in, garbage out. . .



Yet another example

x0 ∈ [0; 1]

xk+1 = µxk(1 − xk)

Let µ = 3.7



Results

N 32 bit 64 bit 128 bit
2 0.2566875 0.2566875 0.2566875
4 0.7680534 0.7680533 0.7680533
6 0.8312892 0.8312889 0.8312889
8 0.9236761 0.9236760 0.9236760

10 0.7133774 0.7133778 0.7133778
12 0.6814939 0.6814953 0.6814953
14 0.5850334 0.5850375 0.5850375
16 0.3381789 0.3381866 0.3381866
18 0.5266685 0.5266460 0.5266460
20 0.2649377 0.2649240 0.2649240
24 0.7726893 0.7727947 0.7727947
28 0.9247919 0.9247575 0.9247575

N 32 bit 64 bit 128 bit
32 0.6627011 0.6632869 0.6632869
36 0.2665924 0.2677791 0.2677791
40 0.7597211 0.7502111 0.7502111
45 0.3075923 0.4160662 0.4160662
50 0.8943822 0.9210730 0.9210730
55 0.2570739 0.7404139 0.7404139
60 0.5249998 0.5649204 0.5649208
70 0.9157254 0.6021104 0.6020892
80 0.9222577 0.4007202 0.4019857
90 0.2573895 0.5755109 0.6455021

100 0.7139580 0.3158045 0.8947899
110 0.2567323 0.7575933 0.5199780



Results (computed up to 1000 significant digits)

k x(k)
---- ------
10: 0.7133778
20: 0.264924
30: 0.7073271
40: 0.7502111
50: 0.921073
60: 0.5649208
70: 0.6020892
80: 0.401986
90: 0.6455194

100: 0.8950223
110: 0.5189601



Computer program

#i n c l u d e <s t d i o . h>
i n t main ( )
{

f l o a t s ;
double d ;
l ong double e ;
i n t i ;
s = d = e = 0 . 5 ;
f o r ( i =1; i <=110; i++)
{

s = 3 .7F ∗ s ∗ ( 1 . F − s ) ;
d = 3 .7∗ d ∗ ( 1 . − d ) ;
e = 3 .7 L ∗ e ∗ ( 1 . L − e ) ;
i f ( i%10==0)

p r i n t f ( "%10 i ␣%.7 f ␣%.7 l f ␣%.7 Lf \n" , i , s , d , e ) ;
}
r e t u r n 0 ;

}
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uploads/sites/2/2020/10/kod.pdf.

Goldberg D., What every computer scientist should know about Floating-Point
arithmetic, [w:] Numerical Computation Guide, Sun Microsystems, Palo Alto
2000, URL
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html.

Ward A., Some issues on floating-point precision under linux, Linux Gazette, , 53,
2000, URL https://linuxgazette.net/issue53/ward.html.
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