Computers' arthmetics wer. 10 z drobnymi modyfikacjami!

Wojciech Myszka

2023-10-16 18:05:52 +0200

Wrocław University of Science and Technology

Binary numeral system

The binary numeral systems is rather old:

- India - 5-2 BC
- in the 11th century in China, arranging the I Ching (Yijing) sets of hexagrams with, yin as 0 , yang as 1 from 0 to 63. I Ching also known as Classic of Changes or Book of Changes is one of the oldest of the Chinese classic texts. The book contains divination system, and is still used for this purpose. The text is now an important part of the Chinese culture.
- Gottfried Leibniz describe it in 1679. See, for example, http://books.google. pl/books?id=Fuk8AAAAcAAJ\&printsec=frontcover\#v=onepage\&q\&f=false (in French!)

Wroclaw University of Science and Technole gy

I Ching hexagrams

I Ching hexagrams

Binary system

The binary system is a positional, base 2 counting system.

1. Two digits: 0 and 1
2. In the decimal system there are ten digits (figures): $0,1,2,3,4,5,6,7,8,9$
3. In the hexadecimal system (base 16 system) there are 16 digits: $0,1,2,3,4,56$, 7, 8, 9, A, B, C, D, E, F
Examples:

dec	bin	hex
10	1010	A
100	1100100	64
123.75	1111011.11	$7 B . C$

Why hexadecimal system is important?

- Each BInary digiT is called a bit (abbreviation small letter "b").
- Eight bits is called a byte (abbreviation big letter "B").
- Computers usually use even multiples of bytes to store numbers (two, four or eight, sometimes sixteen).
- Each hex (hexadecimal in short) digit is four bits, so a byte is two hexadecimal digits.
- It is relatively easy to memorize the binary appearance of all hexadecimal digits ...

"Big" numerals I

In the SI system we are using prefixes to indicate decadic multiplay or fraction

- kilo $\left(10^{3}\right)$, mega $\left(10^{6}\right)$, giga $\left(10^{9}\right), \ldots$ "big numbers"
- mili $\left(10^{-3}\right)$, micro $\left(10^{-6}\right)$, nano $\left(10^{-9}\right), \ldots$ "small numbers"

Because 2^{10} is 1024 we (I mean computer scientists) start to use the prefix "kilo" in meaning 1024 bytes or 1 "kilo-byte").
In consequence:

- mega-byte 1024×1024
- giga-byte $1024 \times 1024 \times 1024$

This is not correct!

"Big" numerals II

To standardize prefixes IEC 60027-2:1998 standard was developed:
kibi $\mathrm{Ki} 2^{10}$
mebi Mi 2^{20}
gibi $\quad \mathrm{Gi} \quad 2^{30}$
tebi $\quad \mathrm{Ti} \quad 2^{40}$
pebi $\mathrm{Pi} \quad 2^{50}$
eksbi Ei $\quad 2^{60}$
zebi $\mathrm{Zi} \quad 2^{70}$
jobi $\mathrm{Yi} \quad 2^{80}$

Conversions

Decimal to binary

Integers:

The number is divided by two, and we note the result on the left and reminder on the right of the vertical line:
10

Wrodaw University of Science and Technolo:

Conversions

Decimal to binary

Integers:

The number is divided by two, and we note the result on the left and reminder on the right of the vertical line:
10
50

Wrodaw University of Science and Technolo

Conversions

Decimal to binary

Integers:

The number is divided by two, and we note the result on the left and reminder on the right of the vertical line:
10
50
2 1

Wrodaw University of Science and Technolo

Conversions

Decimal to binary

Integers:

The number is divided by two, and we note the result on the left and reminder on the right of the vertical line:
10
50
21
10

Wrodaw University of Science and Technolo

Conversions

Decimal to binary

Integers:

The number is divided by two, and we note the result on the left and reminder on the right of the vertical line:

10
0
1
0
1

Wrodaw University of Science and Technolo

Conversions

Decimal to binary

Integers:

The number is divided by two, and we note the result on the left and reminder on the right of the vertical line:

10	
5	0
2	1
1	0
0	1

Reminders (figures on the right), read from bottom to top gives binary value of the converted number.

Wrodaw University of Science and Technolo

Conversions

Decimal to binary

Fractions: The fraction part is multiplied by two, and the integer part (0 or 1) is noted on the left side of vertical line (integer part is removed for the next calculation)
. 33

Conversions

Decimal to binary

Fractions: The fraction part is multiplied by two, and the integer part (0 or 1) is noted on the left side of vertical line (integer part is removed for the next calculation)
. 33
0
. 66

Wrodaw University of Science and Technolo

Conversions

Decimal to binary

Fractions: The fraction part is multiplied by two, and the integer part (0 or 1) is noted on the left side of vertical line (integer part is removed for the next calculation)
.66
1 . 32

Wrodaw University of Science and Technolo:

Conversions

Decimal to binary

Fractions: The fraction part is multiplied by two, and the integer part (0 or 1) is noted on the left side of vertical line (integer part is removed for the next calculation)

Conversions

Decimal to binary

Fractions: The fraction part is multiplied by two, and the integer part (0 or 1) is noted on the left side of vertical line (integer part is removed for the next calculation)
. 33
.66
$1 . .32$
0 . 64
1 . 28

Wrodaw University of Science and Technolo

Conversions

Decimal to binary

Fractions: The fraction part is multiplied by two, and the integer part (0 or 1) is noted on the left side of vertical line (integer part is removed for the next calculation)
. 33
.66
1 . 32
0 . 64
1.28

0 . 56

Wrodaw University of Science and Technolo

Conversions

Decimal to binary

Fractions: The fraction part is multiplied by two, and the integer part (0 or 1) is noted on the left side of vertical line (integer part is removed for the next calculation)
. 33
.66
1 . 32
0 . 64
1.28
$0 \quad .56$
1 . 12

Wrocaw University of Science and Technolo

Conversions

Decimal to binary

Fractions: The fraction part is multiplied by two, and the integer part (0 or 1) is noted on the left side of vertical line (integer part is removed for the next calculation)
. 33
.66
1 . 32
0 . 64
1 . 28
$0 \quad .56$
$1 . .12$
0 . 24

Wrocaw University of Science and Technolo

Conversions

Decimal to binary

Fractions: The fraction part is multiplied by two, and the integer part (0 or 1) is noted on the left side of vertical line (integer part is removed for the next calculation)
. 33

Conversions

Decimal to binary

Fractions: The fraction part is multiplied by two, and the integer part (0 or 1) is noted on the left side of vertical line (integer part is removed for the next calculation)
. 33

Conversions

Decimal to binary

Fractions: The fraction part is multiplied by two, and the integer part (0 or 1) is noted on the left side of vertical line (integer part is removed for the next calculation)
. 33
.66
1 . 32
0 . 64
1 . 28
$0 \quad .56$
$1 . .12$
$0 \quad .24$
0 . 48
0 . 96
1 . 92

Wroclaw University of Science and Technolo

Conversions

Decimal to binary

Fractions: The fraction part is multiplied by two, and the integer part (0 or 1) is noted on the left side of vertical line (integer part is removed for the next calculation)
. 33
.66
$1 . .32$
0 . 64
1 . 28
0 . 56
$1 . .12$
$0 \quad .24$
0 . 48
$0 \quad .96$
1.92
1.84

Wrodaw University of Science and Technolo

Conversions

Decimal to binary

Fractions: The fraction part is multiplied by two, and the integer part (0 or 1) is noted on the left side of vertical line (integer part is removed for the next calculation)
. 33
.66
$1 . .32$
0 . 64
1 . 28
$0 \quad .56$
$1 . .12$
$0 \quad .24$
0 . 48
0 . 96
1.92
1.84

1 . 68

Conversions

Decimal to binary

Fractions: The fraction part is multiplied by two, and the integer part (0 or 1) is noted on the left side of vertical line (integer part is removed for the next calculation)
. 33
.66
$1 . .32$
0 . 64
1 . 28
$0 \quad .56$
$1 . .12$
$0 \quad .24$

0 . 48
0 . 96
1.92
$1 . .84$
1 . 68
$0.010101000111_{(2)}=0.329833984375_{(10)}$
Wroclaw University of Science and Technold

Conversions

Binary to decimal

Homework!

Processor

Logical operations (Boole's algebra)
Logical AND $Y=A \bigcap B$

A	B	Y
0	0	0
0	1	0
1	0	0
1	1	1

Processor

Logical operations (Boole's algebra)
Logical OR $Y=A \bigcup B$

A	B	Y
0	0	0
0	1	1
1	0	1
1	1	1

Processor

Logical operations (Boole's algebra)

Exclusive $\mathrm{OR} Y=A \oplus B$

A	B	Y
0	0	0
0	1	1
1	0	1
1	1	0

Processor

Logical operations (Boole's algebra)

Logical AND $Y=A \bigcap B$

A	B	Y
0	0	0
0	1	0
1	0	0
1	1	1

Exclusive OR $Y=A \bigoplus B$

A	B	Y
0	0	0
0	1	1
1	0	1
1	1	0

Logical OR $Y=A \bigcup B$

A	B	Y
0	0	0
0	1	1
1	0	1
1	1	1

Logical Operations

Logical AND

AND	0	1
0	0	0
1	0	1

Logical operations Logical OR

$$
\begin{array}{r|r|r}
\text { OR } & 0 & 1 \\
\hline 0 & 0 & 1 \\
\hline 1 & 1 & 1
\end{array}
$$

$A \cup B$

Wrocaw University of Science and Technolo

Logical operations XOR

XOR	0	1
0	0	1
1	1	0

$(\bar{A} \cap B) \cup(A \cap \bar{B})$

Relay

Relay

Relay

Vacuum tubes (valves)

Diode

Wroclaw University of Science and Technolo

Vacuum tubes (valves)

Triode

Currant Flow 5 mA

Binary arithmetic operations

1. Addition:

- $0+0=0$
- $0+1=1$
- $1+0=1$
- $1+1=10$

Binary arithmetic operations

1. Addition:

- $0+0=0$
- $0+1=1$
- $1+0=1$
- $1+1=10$

2. Multiplication:

- $0 * 0=0$
- $0 * 1=0$
- $1 * 0=0$
- $1 * 1=1$

Processor

Addition

1. "Half-Adder"
2. Only two bits $\left(Y=X_{1}+X_{2}\right)$
3. Carry ($C_{\text {out }}$)
4. "Truth table"

X_{1}	X_{2}	Y	$C_{\text {out }}$
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$
Y=X_{1} \oplus X_{2}
$$

$$
C_{\text {out }}=X_{1} \cap X_{2}
$$

Processor

Addition: Full Adder

$C_{\text {in }}$	X_{1}	X_{2}	Y	$C_{\text {out }}$
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$
\begin{gathered}
Y=C_{\text {in }} \oplus\left(X_{1} \oplus X_{2}\right) \\
C_{\text {out }}=\left(X_{1} \cap X_{2}\right) \cup\left(C_{\text {in }} \cap\left(X_{1} \oplus X_{2}\right)\right)
\end{gathered}
$$

Logical operations
XOR application

Cursor

Result

Logical operations XOR application

Character

0	0	1	0	0
0	0	1	0	0
1	1	1	1	1
0	0	1	0	0
0	0	1	0	0

1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1

Logical operations XOR application

Character

0	0	1	0	0
0	0	1	0	0
1	1	1	1	1
0	0	1	0	0
0	0	1	0	0

Cursor				
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1

Result

I				

Logical operations XOR application

Character

0	0	1	0	0
0	0	1	0	0
1	1	1	1	1
0	0	1	0	0
0	0	1	0	0

Cursor

1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1

Result

1	1			

Logical operations XOR application

0	0	1	0	0
0	0	1	0	0
1	1	1	1	1
0	0	1	0	0
0	0	1	0	0

Cursor				
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1

Result

1	1	0		

Logical operations XOR application

Character				
0	0	1	0	0
0	0	1	0	0
1	1	1	1	1
0	0	1	0	0
0	0	1	0	0

Cursor

1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1

Result

1	1	0	1	

Logical operations XOR application

Character

0	0	1	0	0
0	0	1	0	0
1	1	1	1	1
0	0	1	0	0
0	0	1	0	0

Cursor				
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1

Result

1	1	0	1	1

Logical operations XOR application

Character

0	0	1	0	0
0	0	1	0	0
1	1	1	1	1
0	0	1	0	0
0	0	1	0	0

Cursor				
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1

Result

1	1	0	1	1

Logical operations XOR application

0	0	1	0	0
0	0	1	0	0
1	1	1	1	1
0	0	1	0	0
0	0	1	0	0

Cursor				
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1

Result

1	1	0	1	1
1	1	0	1	1
0	0	0	0	0
1	1	0	1	1
1	1	0	1	1

Logical operations

XOR application

Cursor

Result

XOR — Patent nonsense

Method for dynamically viewing image elements stored in a random access
Patent number: 4197590
Filing date: Jan 19, 1978
Issue date: Apr 8, 1980
Inventors: Josef S. Sukonick, Greg J. Tilden
Assignees: NuGraphics, Inc.
Primary Examiner: Thomas M. Heckler

Binary numbers

- Each binary digit is bit: BInary digiT

Binary numbers

- Each binary digit is bit: BInary digiT
- Eight bits is byte. In byte:

Binary numbers

- Each binary digit is bit: BInary digiT
- Eight bits is byte. In byte:
- 00000000 to 0 (zero)

Binary numbers

- Each binary digit is bit: BInary digiT
- Eight bits is byte. In byte:
- 00000000 to 0 (zero)
- 11111111 to $2551 * 2^{7}+1 * 2^{6}+1 * 2^{5}+1 * 2^{4}+1 * 2^{3}+1 * 2^{2}+1 * 2^{1}+1 * 2^{0}=$ $2^{8}-1$

Binary numbers

- Each binary digit is bit: BInary digiT
- Eight bits is byte. In byte:
- 00000000 to 0 (zero)
- 11111111 to $2551 * 2^{7}+1 * 2^{6}+1 * 2^{5}+1 * 2^{4}+1 * 2^{3}+1 * 2^{2}+1 * 2^{1}+1 * 2^{0}=$ $2^{8}-1$
- Word (Computer jargon) is group of bytes

Binary numbers

- Each binary digit is bit: BInary digiT
- Eight bits is byte. In byte:
- 00000000 to 0 (zero)
- 11111111 to $2551 * 2^{7}+1 * 2^{6}+1 * 2^{5}+1 * 2^{4}+1 * 2^{3}+1 * 2^{2}+1 * 2^{1}+1 * 2^{0}=$ $2^{8}-1$
- Word (Computer jargon) is group of bytes
- 16 bits architecture: 2

Binary numbers

- Each binary digit is bit: BInary digiT
- Eight bits is byte. In byte:
- 00000000 to 0 (zero)
- 11111111 to $2551 * 2^{7}+1 * 2^{6}+1 * 2^{5}+1 * 2^{4}+1 * 2^{3}+1 * 2^{2}+1 * 2^{1}+1 * 2^{0}=$ $2^{8}-1$
- Word (Computer jargon) is group of bytes
- 16 bits architecture: 2
- 32 bits architecture: 4

Binary numbers

- Each binary digit is bit: BInary digiT
- Eight bits is byte. In byte:
- 00000000 to 0 (zero)
- 11111111 to $2551 * 2^{7}+1 * 2^{6}+1 * 2^{5}+1 * 2^{4}+1 * 2^{3}+1 * 2^{2}+1 * 2^{1}+1 * 2^{0}=$ $2^{8}-1$
- Word (Computer jargon) is group of bytes
- 16 bits architecture: 2
- 32 bits architecture: 4
- 64 bits architecture: 8

Negative numbers?

1. In the decimal system: +3 or 3 , and negative: -3

Negative numbers?

1. In the decimal system: +3 or 3 , and negative: -3
2. In binary system (theoretically): +00000011 or $-00000011 \ldots$

Negative numbers?

1. In the decimal system: +3 or 3 , and negative: -3
2. In binary system (theoretically): +00000011 or $-00000011 \ldots$
3. ... but how to note signs + and - ?

Negative numbers?

1. In the decimal system: +3 or 3 , and negative: -3
2. In binary system (theoretically): +00000011 or $-00000011 \ldots$
3. ... but how to note signs + and - ?
4. The easiest way is to use zero as plus $3-00000011$

Negative numbers?

1. In the decimal system: +3 or 3 , and negative: -3
2. In binary system (theoretically): +00000011 or $-00000011 \ldots$
3. ... but how to note signs + and - ?
4. The easiest way is to use zero as plus $3-00000011$
5. The easiest way is to use one as minus -3 - 10000011

Negative numbers?

1. In the decimal system: +3 or 3 , and negative: -3
2. In binary system (theoretically): +00000011 or $-00000011 \ldots$
3. ... but how to note signs + and - ?
4. The easiest way is to use zero as plus $3-00000011$
5. The easiest way is to use one as minus -3 - 10000011
6. How comfortable do integer calculations (positive and negative)?

Negative integers

	rac	ion
-	0	1
0	0	1
1		0

Negative integers

```
"Subtraction Table:"
\begin{tabular}{c|cc}
- & 0 & 1 \\
\hline 0 & 0 & 1 \\
1 & 1 & 0
\end{tabular}
We will try it.
(Let assume that we use 4-bit numbers)
- \(0011-1=0010\)
```


Negative integers

```
"Subtraction Table:"
\begin{tabular}{c|cc}
- & 0 & 1 \\
\hline 0 & 0 & 1 \\
1 & 1 & 0
\end{tabular}
We will try it.
(Let assume that we use 4-bit numbers)
- \(0011-1=0010\)
- \(0010-1=0001\)
```

Wrocaw University of Science and Technolo

Negative integers

"Subtraction Table:"

-	0	1
0	0	1
1	1	0

We will try it.
(Let assume that we use 4-bit numbers)

- $0011-1=0010$
- $0010-1=0001$
- $0001-1=0000$

Wrocaw University of Science and Technolo

Negative integers

"Subtraction Table:"

-	0	1
0	0	1
1	1	0

We will try it.
(Let assume that we use 4-bit numbers)

- $0011-1=0010$
- $0010-1=0001$
- $0001-1=0000$
- $0000-1=1111$

Negative integers

"Subtraction Table:"

-	0	1
0	0	1
1	1	0

We will try it.
(Let assume that we use 4-bit numbers)

- $0011-1=0010$
- $0010-1=0001$
- $0001-1=0000$
- $0000-1=1111$

Negative integers

"Subtraction Table:"

-	0	1
0	0	1
1	1	0

We will try it.
(Let assume that we use 4-bit numbers)

- $0011-1=0010$
- $0010-1=0001$
- $0001-1=0000$
- $0000-1=1111$

So -1 is 1111 (in 4-bit word). Isn't it?

Negative integers

Let's check (ance again only four bits):

$$
\begin{array}{ccc}
5+(-1) \\
0 & 1 & 0 \\
\hline & 1 \\
1 & 1 & 1
\end{array} 1
$$

Negative integers

Let's check (ance again only four bits):

\[

\]

Negative integers

Let's check (ance again only four bits):

\[

\]

How do you like this?

Wrodaw University of Science and Technold

Negative integers

Let's check (ance again only four bits):

\[

\]

How do you like this?
It is called "Two's complement (code)"

An excursus

Decimal numbers, only two digits:

3	3
9	9

An excursus

Decimal numbers, only two digits:

$$
\begin{array}{r}
33 \\
9 \\
\hline 193
\end{array}
$$

Negation

To get the two's complement of a binary number, the bits are inverted, or "flipped", by using the bitwise NOT operation; the value of 1 is then added to the resulting value, ignoring the overflow which occurs when taking the two's complement of $0 .:$

1 is 0001
inversion: 1110
adding 1: 1111
2 to 0010
inversion: 1101
adding 1: 1110
checking $5+(-2)$
$\begin{array}{llll}0 & 1 & 0 & 1\end{array}$

1	1	1	0
0	0	1	1

Multiplication?

Exercise

Let's assume that our computer is 5-bit (4 bits + sign?)

0	0	1	0	1
$*$	1	1	1	1

Wrocaw University

Multiplication?

Exercise

Let's assume that our computer is 5-bit (4 bits + sign?)

0	0	1	0	1
$*$	1	1	1	0

Homework!

GOTHOFREDI GUILLELMI L E I B N IT II,

S. Cefar. Majefatis Confliarii , vo S. Reg. Majeft. Britanniarum a Confliis Ju/titise intimis, nec non
a fribenda Hiforia,
OPERA OMNIA,
Nunc primum collecta, in Claffes diftributa, prafationibus \& indicibus exornata, fudio
LUDOVICI DUTENS. TOMUS QUARTUS,

In ters partes diffriburas, quaram

1. Continet Philofophiam in genere, \& opufcula Sinenfes attingentia.
II. Hiftoriam \& Antiquitates.
III. Jurifprudentiam.

GENEV压,
Apud Fratres de tournes.

[^0]SECTIONQUATRIEME.

DES CARACTERES DONT FOHI FONDATEUR

 DE L'EMPIRE CHINOIS S'EST SERVI DANS SESS ECRITS, ET DE L'ARITHMETIQUE BINAIRE.LXVIII. Des caraflieres de FoHI, fondateur de IEmpire. LXIX. De Tarithmitique binaire. LXX. De laritbmetique quinaire, danaire, ơc. LXXI. De laritbmétique binaire. LXXII. De Iaddition. LXXIII. De la fouflraftion of de la multiplication. LXXIV. De la divifion. LXXV. De Iutilité de Paritbmítique binaire.
LXVIII. Il y a bien de l'apparence, que fi nos Européens étoient affez informés de la Literature Chinoife, le fecours de la Logique, de la Critique, des Mathématiques \& de nôtre maniére de nous exprimer plus déterminée que la leur, nous feroit découvrir dans les Monumens Chinois d'une antiquité fi reculée, bien des chofes inconnues aux Chinois modernes, \& même à leurs interprètes poftérieurs, tout claffiques qu'on les croie. C'eft ainfi que le R. P. Bouvet \& moi nous avons découvert le fens apparemment le plus véritable felon la lettre des caractères de FOHI fondateur de l'Empire, qui ne confiftent que dans la combinaifon des lignes entiéres $\&<$ interrompues, $\&$ qui paffent pour les plus anciens de la Chine, comme ils en font auffi tans difficulté les plus fimples. 11 y en a 64 figures comprifes dans le livre appellé Ye Kim, c'eft à-dire, le livre des Variations; plufieurs fiecles après Fohi, l'Empereur Ven Vam \& fon fils Cheu Cum, \& encore plus de cinq fiécles après le célébre Confulius, y ont cheache des myfteres philofor hiques. D'autres en ont même voulu tirer une maniére de Geomance, \& d'autres vanités fem-
blables.

PHILOSOPHIA:

Au contraire feu M. Erhard Wrigelius alla à un moindre nombre, attaché au quaternaire ou Tetractys a la façon de Pythogore ; ainfi conme dans la progreffion par 10, nous écrivons tous les nombres dans fa progreffion quaternaire par $0,1,2,3$, par exemple 321 lui fignifioit $48+8$ +1 , c'eft-d-dire 57 felon l'expreflion commune.
LXXI. Cela me donna occation de penfer, que dans la progreffion binaire ou double, tous les nombres pourroient étre écrits par $\circ \&{ }^{\circ} 1$. Ainfi

1	1
10	2
100	4
1000	8
10000	16
100000	32
$100 c 00$	64
8 cc	8 c.

10 vaudra 2
100 vaudra 4
1000 vaudra 8
\&c.

$1000 c 00$	
\&c.	

Et les nombres tout de fuite s'exprimeront ainfi :

Ces Expreffions s'accordent avec l'Hypothefe, par exemple
$111=100+10+1=4+2+1=7 \quad 11001=10000$
$1000+1=16+8+1=25$
$+1000+1=16+8+1=25$
Elles peuvent auffi ctre trouvées par laddition con Elles peuvent aufic etre trouvees
tinuelle de l'unité, par exemple

Les points marquent l'unité que dans le calcul commun on retient dans la mémoire.

Abstract

Back

[^0]: MDCCLXVIII.

