
Can a Computer be Wrong?
Information Technologies

Wojciech Myszka

Department of Mechanics, Materials and Biomedical Engineering

January 2023

1 Data

2 Human (operator)

3 Hardware (inevitable)

4 Hardware

5 Manufacturer fault

6 Software

7 Bug free software

8 List of software bugs

Data

Measurement (Absolute error)

▶ I was talking about this in one of the previous lectures.
▶ One of the main sources of errors are data.
▶ Knowing the range of each value allows us to predict values of the

result.
▶ This can be difficult and tricky.

▶ However, in most cases we assume that the data values are correct
and believe in computer calculations.

https://kmim.wm.pwr.edu.pl/myszka/wp-content/uploads/sites/2/2015/10/ti03_fractions.pdf

Human (operator)

Operator

▶ In general, it is difficult to take into account human errors.
▶ These include:

▶ not understanding the problem solved by the program,

▶ errors in preparing input data,

▶ wrong answer to the computer prompt,

▶ . . .

Hardware (inevitable)

Number of bits

This is a quite different source of error.

1. Most of todays computers have
▶ 64 (rarely 32) bits processors

2. What does this mean?

Number of bits — range I

1. The biggest integer value
▶ 32 bits: from −231 to 231 − 1 (−2, 147, 483, 648 to 2, 147, 483, 647) or

two billion, one hundred forty-seven million, four hundred
eighty-three thousand, six hundred forty-seven

▶ 64 bits: from −263 to 263 − 1 (−9, 223, 372, 036, 854, 775, 808 to
9, 223, 372, 036, 854, 775, 807) nine quintillion two hundred twenty
three quadrillion three hundred seventy two trillion thirty six billion
eight hundred fifty four million seven hundred seventy five thousand
eight hundred and seven

2. What happens if our value exceeds this limits?

Number of bits — range II

2.1 Let us assume that we are using 8 bit arithmetics (this will be simpler!)

bit no. 7 6 5 4 3 2 1 0

127 0 1 1 1 1 1 1 1
+1 0 0 0 0 0 0 0 1

−128 1 0 0 0 0 0 0 0

Number of bits — range III
in decimal this means 127 + 1

and the result is −128!

All integer computations are performed using so called modulo
arithmetics
▶ modulo 28 (8 bit computer)

▶ modulo 232 (32 bit computer)

▶ modulo 264 (64 bit computer)

i.e., the computer takes n least significant bits from the result
(n = 8, 16, 32, 64, . . .)

Number of bits — range (floating point numbers)

Shortly (more about this in the lecture number 5)

1. 32 bits computer from 1.17549 × 10−38 to 3.4028235 × 1038

2. 64 bits computer from 2−1022 ≈ 210−308 to approximately
21024 ≈ 210308 (2.22507 × 10−308 to 1.79769 × 10308).

3. If we exceed the range we will got infinity (∞) on one side, and zero
on the other.

http://kmim.wm.pwr.edu.pl/myszka/wp-content/uploads/sites/2/2015/10/ti03_fractions.pdf

Floating points numbers — precision

Shortly

1. 32 bits computer: 24 significant binary digits (approx. 7.2 decimal
digits)

2. 64 bits computer: 53 significant binary digits (approx. 15.9 decimal
digits)

3. Beware adding numbers differing in range!
4. Remember about decimal to binary conversions errors

Floating point numbers vs Real

0.1 or 10 cents
0.110 = 0.0(0011) ≈ 0,0001100110011001100110011 . . .
Taking into account only 24 significant binary digits and converting back
to decimal, we obtain 0.10000000149011611938
It is quite good, but not exact.

Error or design principle?

If you know this — it is a design principle!

If not — can be treated as an error!

In general
These are not errors!

Hardware

Random I

1. Computer is so complicated that if something goes wrong (e.g.,
overheating the processor, memory errors,. . .) it stops working.

2. Accidental change of data value in memory (random bit flipping
caused by radiation) is very rare:

2.1 memory without ECC — approximately once per 7 years

2.2 memory with ECC — approximately once per 700 years

This changes over time, and now is less frequent than in early 70’s

3. Errors during data transmission

4. Errors on disk

Random II

That can happen, but. . .
There are special algorithms for detection, correction, and recovery:
▶ control sum,
▶ retransmission,
▶ . . .

Manufacturer fault

Beginnings of 80x86

1. In 1978 16-bit processors were introduced
▶ 8086

▶ 80186

▶ 80286

2. In 1985 32-bit processors were introduced
▶ 80386

▶ 80486

▶ 80586 (??) name change: Pentium or P5 (1993)

fdiv bug I
1. Story described by Thomas R. Nicely

▶ math professor

▶ working in computational number theory

2. Intel testers realized (May 1994), that new processor incorrectly
computes result of one mathematical operation. They do nothing.

3. Nicely has discovered (June 1994) strange bug in newly bought
Pentium processor

insted

4195835.0
3145727.0

= 1.333 820 449 136 241 002

https://web.archive.org/web/20191126144803/http://www.trnicely.net:80/pentbug/pentbug.html
https://faculty.lynchburg.edu/~nicely/

fdiv bug II
computes

4195835.0
3145727.0

= 1.333 739 068 902 037 589

4. Nicely performs tests (July–November’94) and definitively confirms
that bug is caused by a processor.

5. Nicely sent an email describing the error he had discovered in the
Pentium floating point unit to various contacts.

6. This flaw in the Pentium FPU was quickly verified by other people
around the Internet, and became known as the Pentium FDIV bug.

7. The story first appeared in the press on November 7, 1994.

fdiv bug III
8. Publicly, Intel acknowledged the floating-point flaw, but claimed that

it was not serious and would not affect most users.
Failure category and systemcomponent HardorSoft

FIT rate(per 109devicehours)

MTBF(1 in xyears)
Rate of significant failure seenby user

16 4-Mbit DRAM parts in a 60MhzPentium TM processor systemwithout ECC
Soft 16 7years Depends upon where defectoccurs and how propagated

Particle defects in PentiumTMprocessor Hard 400-500 200-250years
Depends upon where defectoccurs and how propagated

16 4-Mbit DRAM parts in a 60MhzPentium TM processor system withECC
Soft 160 700years Depends upon where defectoccurs and how propagated

PC user on spreadsheet running1,000 independent divides a day onthe PentiumTM processor a
Hard 3.3 27,000years Less frequent than 1 in 27,000years. Depends upon the wayinaccurate result gets used

fdiv bug IV

Class Applications MTBF Impact of failurein div/rem/tran
Wordprocessing Microsoft Word, Wordperfect, etc. Never None
Spreadsheets(basic user) 123, Excel, QuattroPro (basic user runs fewer than1000 div/day) 27,000years Unnoticeable
Publishing,Graphics Print Shop, Adobe Acrobat viewers 270years Impact only onViewingPersonalMoneyManagement

Quicken, Money, Managing Your Money, SimplyMoney, TurboTax (fewer than 14,000 divides per day) 2,000years Unnoticeable

Games X-Wing, Falcon (flight simulator), Strategy Games 270years Impact is benign,(since game)

fdiv bug V

Usage Examples Divisionintensive Impact
Standardspreadsheetanalysis

Corporate finance,budget or marketinganalysis,
No None

Basic financialcalculations Present value, yield tomaturity Some Significant only in the extremecircumstance of > 10 million divisionsper dayComplexmathematicalmodels
Black-Scholes model,Binomial model Some Could be significant on continuous use

Path basedmodels andsimulations
Monte Carlo risk analysis,non recombining paths Yes Significant unless there is a low P2factor.

Meltdown and Spectre

In general

Computers Do Not Err

Software

Important note

Please do remember the software always has errors.

EULA

EULA
End User License Agreement

Example I

LIMITED WARRANTY. Except with respect to the Redistributables, which
are provided “as is,” without warranty of any kind, Company warrants that
(a) the SOFTWARE PRODUCT will perform substantially in accordance
with the accompanying written materials for a period of ninety (90) days
from the date of receipt, and (b) any Support Services provided by
Company shall be substantially as described in applicable written
materials provided to you by Company, and Company support engineers
will make commercially reasonable efforts to solve any problem. To the
extent allowed by applicable law, implied warranties on the SOFTWARE
PRODUCT, if any, are limited to ninety (90) days. [. . .]

Example II

NO OTHER WARRANTIES. TO THE MAXIMUM EXTENT
PERMITTED BY APPLICABLE LAW, COMPANY AND ITS SUPPLIERS
DISCLAIM ALL OTHER WARRANTIES AND CONDITIONS, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
IMPLIED WARRANTIES OR CONDITIONS OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND
NONINFRINGEMENT, WITH REGARD TO THE SOFTWARE
PRODUCT, AND THE PROVISION OF OR FAILURE TO PROVIDE
SUPPORT SERVICES. THIS LIMITED WARRANTY GIVES YOU
SPECIFIC LEGAL RIGHTS. [. . .]

Example III
LIMITATION OF LIABILITY. TO THE MAXIMUM EXTENT PERMITTED
BY APPLICABLE LAW, IN NO EVENT SHALL COMPANY OR ITS
SUPPLIERS BE LIABLE FOR ANY SPECIAL, INCIDENTAL, INDIRECT,
OR CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING,
WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS
PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS
INFORMATION, OR ANY OTHER PECUNIARY LOSS) ARISING OUT
OF THE USE OF OR INABILITY TO USE THE SOFTWARE
PRODUCT OR THE FAILURE TO PROVIDE SUPPORT SERVICES,
EVEN IF COMPANY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES. IN ANY CASE, COMPANY’S ENTIRE LIABILITY
UNDER ANY PROVISION OF THIS EULA SHALL BE LIMITED TO
THE GREATER OF THE AMOUNT ACTUALLY PAID BY YOU FOR
THE SOFTWARE PRODUCT OR U.S.$5.00; [. . .]

The total Cost of Poor Software Quality

According to the recent report “The Cost of Poor Software Quality in the
US: A 2020 Report” the total Cost of Poor Software Quality (CPSQ) in
the US is $2.08 trillion (T).

https://www.it-cisq.org/pdf/CPSQ-2020-report.pdf
https://www.it-cisq.org/pdf/CPSQ-2020-report.pdf

TeX I

1. TEX is a typesetting system (or a “formatting system”) which was
designed and mostly written by Donald Knuth and released in 1978.

2. On Knuth’s home page one can find such excerpt:
The intervals between [. . .] maintenance periods are increasing,
because the systems have been converging to an error-free state
(last updated in 2014).

https://www-cs-faculty.stanford.edu/~knuth/
https://www-cs-faculty.stanford.edu/~knuth/abcde.html
https://www-cs-faculty.stanford.edu/~knuth/abcde.html

TeX II

Bug free software

Can we build a bug free software?

The analogy between algorithms and recipes fails when it comes to issues
of correctness. When a cooking or baking endeavor does not succeed
there can be two reasons: 1. the “hardware” is to blame, or 2. the recipe
is imprecise and unclear.

How to improve?
▶ testing and debugging. . .

Partial and Total Correctness I

Finding an algorithmic solution consists of two tasks:

1. a specification of the set of legal inputs; and
2. the relationship between the inputs and the desired outputs.

This “relationship” is a description of an algorithm, and is used to create
the algorithm.

To facilitate precise treatment of the correctness problem for algorithms,
researchers distinguish between two kinds of correctness, depending upon
whether termination is or is not included.

Partial and Total Correctness II

Partial correctness
it is said that an algorithm A is partially correct (with respect to its
definition of legal inputs and desired relationship with outputs) if, for
every legal input X , if A terminates when run on X then the specified
relationship holds between X and the resulting output set.
Thus, a partially correct sorting algorithm might not terminate on all legal
lists, but whenever it does, a correctly sorted list is the result.

Partial and Total Correctness III

Total correctness
We say that A terminates if it halts when run on any one of the legal
inputs. Both these notions taken together—partial correctness and
termination—yield a totally correct algorithm, which correctly solves the
algorithmic problem for every legal input: the process of running A on any
such input X indeed terminates and produces outputs satisfying the
desired relationship

Partial and Total Correctness (cont.)

Proofing the correctness of an algorithm

1. Is very difficult
2. For every correct algorithm it can be proofed that it is correct.
3. How to do this is another matter.

List of software bugs

List of software bugs on Wikipedia

https://en.wikipedia.org/wiki/List_of_software_bugs

https://en.wikipedia.org/wiki/List_of_software_bugs

Some examples I
▶ In the early 1960s one of the American spaceships in the Mariner

series sent to Venus was lost forever at a cost of millions of dollars,
due to a mistake in a flight control computer program.

▶ In 1981 one of the television stations covering provincial elections in
Quebec, Canada, was led by its erroneous computer programs into
believing that a small party, originally thought to have no chance at
all, was actually leading. This information, and the consequent
responses of commentators, were passed on to millions of viewers.

▶ In a series of incidents between 1985 and 1987, several patients
received massive radiation overdoses from Therac-25
radiation-therapy systems; three of them died from resulting
complications. The hardware safety interlocks from previous models
had been replaced by software safety checks, but all these incidents
involved programming mistakes.

Some examples II
▶ Some years ago, a Danish lady received, around her 107th birthday,

a computerized letter from the local school authorities with
instructions as to the registration procedure for first grade in
elementary school. It turned out that only two digits were allotted for
the “age” field in the database.

▶ At the turn of the millennium, software problems became headline
news with the so-called Year 2000 Problem, or the Y2K bug. The
fear was that on January 1, 2000, all hell would break loose, because
computers that used two digits for storing years would erroneously
assume that a year given as 00 was 1900, when in fact it was 2000.
An extremely expensive (and, in retrospect, quite successful) effort to
correct these programs had to be taken by software companies
worldwide.

Some examples III

▶ The software error of a MIM-104 Patriot caused its system clock to
drift by one third of a second over a period of one hundred hours –
resulting in failure to locate and intercept an incoming Iraqi Al
Hussein missile, which then struck Dharan barracks, Saudi Arabia
(February 25, 1991), killing 28 Americans.

Some examples IV

▶ While attempting its first overseas deployment to the Kadena Air
Base in Okinawa, Japan, on 11 February 2007, a group of six F-22
Raptors flying from Hickam AFB, Hawaii, experienced multiple
computer crashes coincident with their crossing of the 180th meridian
of longitude (the International Date Line). The computer failures
included at least navigation (completely lost) and communication.
The fighters were able to return to Hawaii by following their tankers,
something that might have been problematic had the weather not
been good. The error was fixed within 48 hours, allowing a delayed
deployment.

	Data
	Human (operator)
	Hardware (inevitable)
	Hardware
	Manufacturer fault
	Software
	Bug free software
	List of software bugs

