5

Wroctaw

University

of Science
and Technology

The Efficiency of Algorithms

Information Technologies

Wojciech Myszka

Department of Mechanics, Materials and Biomedical Engineering

January 2023

9

@ !ntroduction

@® Software

® Computer speed

O Improvements

@ Complexity

Introduction

IEdll Let's think about building a bridge |

When asked to construct a bridge over a river, it is easy to construct an
“incorrect” one:

1. The bridge might not be wide enough for the required lanes,
2. it might not be strong enough to carry rush-hour traffic, or
3. it might not reach the other side at all!

However, even if it is “correct,” in the sense that it fully satisfies the
operational requirements, not every candidate design for the bridge will
be acceptable:

» |t is possible that the design calls for too much
> manpower, or
> too many materials or
> components.
» It might also require far too much time to bring to completion.

Iidl Let's think about building a bridge |I

In other words, although it will result in a good bridge, a design might be
too expensive

Software

Creating a software

1. The same problems as above
2. Incorrect algorithms are bad
3. Even a correct algorithm might leave much to be desired.

Example

Fibonacci series

F0)=1, f(1)=1 f(n)=Ff(n—2)+f(n—1)

Recursive Non-Recursive
n time n time
10 0,003s 10 0,003s
20 0,003s 20 0,003s
30 0,016s 30 0,003s
40 1,265s 40 0,003s
45 14,016s 45 0,003s

®

Efficiency criteria

1. Complexity measures of memory space (or simply space)

and

2. time.

Space

The first of these is measured by
several things, including the number
of variables, and the number and
sizes of the data structures used in
executing the algorithm.

Time

The other is measured by the number
of elementary actions carried out by
the processor in such an execution.

Computer speed

Moore's Law |

Moore’s law is the observation (made in 1965 by Gordon Moore from
Intel) that the number of transistors in a dense integrated circuit (IC)
doubles about every two years. Moore’s law is an observation and
projection of a historical trend. Rather than a law of physics linked to
gains from experience in production.

1\@ oore’s Law: The number of transistors on microchips doubles every two years [SUaE]
ribes the empirical regu the number of tra circuits doub in Data
t is important for other aspe al such as process

mately every two years.
ed or the price of computers

Tv,

Transistor count
50,000,000,000

Y| @
° o
R4
N o
3 wsggg
°38.§ ;
Be 883,84
o8,
i %02
500,000,000 ° i
° 2 ®
oo fe
100,000,000 ‘.3 o
50,000,000
. 00%° °
8o &
10,000,000 g
5,000,000 o 8o
°
My
1,000,000 L SR
500,000 ° °
° °
° 3
100,000 °

S S S

) G
N
Vcar inw h\ch the rm(rr)(h\p was first mm)du(ed

Figure 1: By Max Roser, Hannah Ritchie, CC BY 4.0,

https://ourworldindata.org/uploads/2020/11/Transistor-Count-over-time.png

Moore's Law Il

35 YEARS OF MICROPROCESSOR TREND DATA

10? 3 Transistors

3 £ 1 g £ £] | (thousands)
10° b

Single-thread

4 Performance
10" ¢ (SpeciNT)

3
107 ¢

2 Typical Power
10" ¢ (Watts)

1 Number of
10" ¢ Cores

o :
10°|| - =

1975 1980 1985 1990 1995 2000 2005 2010 2015

Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukctun, L. Hammond and C. Batten
Dotted line extrapolations by C. Moore

Figure 2: 40 Years of Microprocessor Trend Data

https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/

48 Years of Microprocessor Trend Data

48 Years of Microprocessor Trend Data

LA I —— = _
P Transistors
A ta 4 th d
108 F | , WL [| v | (thousands)
A s
el : ‘1 ,ﬁi: o o Single-Thread
— Performance
10t b u3} | (speciNT x 10%)
| Y '.,;d'a"" Ryt oo Feguency (VD)
a ﬂ_. ¥+ Typical Power
10% | S ﬁ.'- * 22002 i "~ " 3 Watts)
11] - "! }v i I .u.'f Number of
10 L4 a = v oY . : g %o | Logical Cores
0 A m v v i vV¥ vw . 3
10° |- ; * D R SO G S NI ¢ & 1
l 1 l 1
1970 1980 1990 2000 2010 2020

Year
Onglna\ data up tclhe year 2010 collected and plorled by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten

PP

@ Battery capacity vs processor performance

Processor Performance
{~Moore’s Law}

10000000 %

-

1000000 ;!

>

100000
10000
1000
100 Battery Capacity
(i.e. Eveready’s Law)

10 —— —
,\Cb@ '\(’3@ f@%gb f\&q/ r\éj} ,E)@ "{9&‘ f‘ifcgg) "bo‘\q, ".'/0\6 "9{9

Figure 3: Energy Harvesting for Structural Health Monitoring Sensor Networks

https://www.researchgate.net/publication/252239618_Energy_Harvesting_for_Structural_Health_Monitoring_Sensor_Networks

Jl} Historical cost of computer memory and storage

Historical cost of computer memory and storage
Measured in US dollars per megabyte.

100 million $/MB

1 million $/MB
10,000 $/MB
100 $/MB
1$/MB
S
0.01 $/MB
Memory
Flash
<0.001 $/MB Solid state
Disk

1956 1970 1980 1990 2000 2010 2020

Il Problems

1. We are interested in finding the shortest route for a traveler who
wishes to visit each of, say, 200 cities. As of now, there is no
computer that can find the route in fewer than millions of years of
computing time!

2. No computer is capable of factoring (that is, finding the prime

numbers that divide) large integers, say, 300 digits long, in fewer
than millions of years.

Improvements

[}l Ways for improving computation |

Transferring instructions from the inside to the outside of
loops

Assume that a teacher wants to normalize the list of grades, by giving the
student who scored best in the exam 100 points and upgrading the rest
accordingly. The algorithm is simple:
(1) compute the maximum score in MAX;
(2) multiply each score by 100 and divide it by MAX.
for I from 1 to N do:
L(I) « L(I) x 100/MAX
this can be improved this way
FACTOR + 100/MAX;
for I from 1 to N do:
L(I) « L(I) x FACTOR

[l Ways for improving computation |l

Searching for an element X in an unordered list

(say for a telephone number in a jumbled telephone book)

The standard algorithm calls for a simple loop, within which two tests are
carried out:

(1) “have we found X?" and

(2) “have we reached the end of the list?”

A positive answer to any one of these questions causes the algorithm to
terminate—successfully in the first case and unsuccessfully in the second.
How to improve this algorithm?

v

Complexity

Binary search |

» For concreteness, let us assume that the telephone book contains a
million names, that is, N is 1,000,000, and let us call them
X1, Xa, ..., X1,000,000- We are searching for Y.

» A naive algorithm that searches for Y s telephone number is the one
previously described for an unsorted list: work through the list L one
name at a time, checking Y against the current name at each step,
and checking for the end of the list at the same time.

» The first comparison carried out by the new algorithm is not between
Y and the first or last name in L, but between Y and the middle
name (or, if the list is of even length, then the last name in the first
half of the list), namely Xs00,000-

Binary search Il

» Assuming that the compared names turn out to be unequal, meaning
that we are not done yet, there are two possibilities:

%

(1) Y precedes Xs00,000 in alphabetic order, and
(2) Xs00,000 precedes Y.

» Since the list is sorted alphabetically, if

(1) is the case we know that if Y appears in the list at all it has to be in
the first half, and if
(2) is the case it must appear in the second half.

» Hence, we can restrict our successive search to the appropriate half
of the list.

» The next comparison will be between Y and the middle element of
that half:

Binary search Il

> Xas0,000 in case (1) and
> X750,000 N case (2).

This process continues, reducing the length of the list, or in more general
terms, the size of the problem, by half at each step.

This procedure is called binary search, and it is really an application of
the divide-and-conquer paradigm discussed ealier

Gl Binary search IV

Wroclaw
Uni

consider the
entire input list L

compare Y
to middle element
of considered
list

FOUND Y

consider first or second
half of considered list, output
depending on the outcome "found"
of the comparison

output
"not found"|

Figure 4: Block diagram

[Ell Binary search V,, ..

wr

(2) Baley

of Scene
and Technology

(3) Boyer <€-————————————————

eureka !!

(5) Davis <€-—--—--

Casy > Boyer

(6) Davison =€—=—————————— -

Casy < Davison

(7) Glen
(8) Greer
(9) Haley

(10) Hanson

Casy < Harrison

(11) Harrison <€ ——————==———— - m e ——
(12) Lister
(13) Mendel

(14) Morgenstern

(15) Patton Length = 20
(16) Perkins Number of comparisons = 5
(17) Quinn

(18) Reed

(19) Schmidt

(20) Woolf

Figure 5: Example

Binary search VI

Wroclaw

University

of Science
and Technology

Comparing the speed |

1.

Very difficult problem

2. Execution time of the normalizing students scores (in both cases) is

proportional to the number of students (in the second case shorter,
but also proportional to number of students)

Time of the linear search algorithm depends on:

3.1 the list length, and

3.2 the data.

In the worst case (searched value not in the list) is proportional to
the list length.

Improved version (shorter), but in the worst case is proportional to

the list length.

Execution time of the binary search algorithm (in the worst case) is
proportional to the base two logarithm of the list length.

Comparing the speed Il

the big-O notation

instead of telling that execution time is proportional to N we will use term

O(N)

This means that when the size of the problem increases, the (worst case)
time increases proportionally. So the binary search algorithm execution
time is in range of O(log, N).

This means that when the list length doubles execution time increases
by 1 (time of one elementary search operation).

[l How much O(log, N) is better than O(N)?

N log, N

10 4

100 7
1000 10

a million 20
a billion 30

a billion billions 60

IEJll Time Analysis of Nested Loops

Sometimes we have something like this:

1. do the following N — 1 times:
1.1 do the following N — 1 times:

» The total time performance of this algorithm is on the order of
(N —1) x (N — 1), which is N> — 2N + 1.

» The N2 is called the dominant term of the expression, meaning that
the other parts, namely, the —2N and the +1, get “swallowed” by the
N2 when the big-O notation is used. Consequently, this algorithm is
an

or quadratic-time, algorithm.

%

Time Analysis of Recursion |

Let us now consider the min&max problem for finding the extremal
elements in a list L. The naive algorithm runs through the list iteratively,
updating two variables that hold the current extremal elements. It is
clearly linear. Here is the recursive routine, which was claimed to be
better:

subroutine find-min&max-of L:

1. if L consists of one element, then set MIN and MAX to it; if it
consists of two elements, then set MIN to the smaller of them and
MAX to the larger;

2. otherwise do the following:

2.1 split L into two halves, Liest and Lyight;
2.2 call find-min&max-of L, placing returned values in MIN,eq and
MAX eft;

Time Analysis of Recursion Il

2.3 call find-min&max-of Ligh, placing returned values in MINgp,: and
MAXright
2.4 set MIN to smaller of MINese and MIN gy ;
2.5 set MAX to larger of MAXese and MAX ight;
3. return with MIN and MAX.

&

» The iterative algorithm operates by carrying out two comparisons for
each element in the list, one with the current maximum and one with
the current minimum. Hence it yields a total comparison count of 2/V.

» Let C(N) denote the (worst-case) number of comparisons required by
the recursive min&max routine on lists of length M.

1. If Nis 2, precisely one comparison is carried out—the one implied by
line 1 of the routine; if N is 3, three comparisons are carried out, as
you can verify.

&l Time Analysis of Recursion I

2. If N is greater than 3, the comparisons carried out consist precisely of
two sets of comparisons for lists of length N/2, since there are two
recursive calls, and two additional comparisons—those appearing on
lines (2.4) and (2.5). (If N is odd, the lists are of length (N +1)/2 and

(N —1)/2)
» We can write this:

> C(2)=1
> C(N)=2x C(N/2)+2

» And solve as:

C(N) = 3N/2 — 2

(in case where N is power of two)

Still O(N)!

@ The Towers of Hanot Revisited

The time to solve this puzzle is

0(2M)

where N is number of rings.

The Monkey Puzzle Problem |

Figure 6: The Monkey Puzzle

» This puzzle involves nine square cards whose sides are imprinted
with the upper and lower halves of colored monkeys.

The Monkey Puzzle Problem Il

» The objective is to arrange the cards in the form of a 3 by 3 square
such that halves match and colors are identical wherever edges meet.

» We shall assume that the cards are oriented, meaning that the edges
have fixed directions, “up,” “down,” “right,” and “left,” so that they are
not to be rotated.

» A naive solution to the problem is not too hard to come by.

» We need only observe that each input involves only finitely many
cards, and that there are only finitely many locations to fill with them.

» Hence, there are only finitely many different ways of arranging the
input cards into an M by M square.

The Monkey Puzzle Problem Il

» On the first step, the first card can be placed on N =M x M
locations, second car on N — 1 locations, and so on. In general we
have

Nx(N—-1)x(N—=2)x---x2x1=N!
arrangements.

The time needed to solve this puzzle is

O(N)

Reasonable vs. Unreasonable Time |

Polynomial

Exponential

N 20 60 100 300 1000
Function
SN 100 300 500 1500 5000
N x log,N 86 354 665 2469 9966
N? 400 3600 10,000 90,000 1 million
(7 digits)
N3 8000 216,000 1 million 27 million 1 billion
(7 digits) (8 digits) (10 digits)
2 1,048,576 a 19-digit a 31-digit a 91-digit a 302-digit
number number number number
N! a 19-digit an 82-digit a 161-digit a 623-digit unimaginably
number number number number large
NV a 27-digit a 107-digit a 201-digit a 744-digit unimaginably
number number number number large

Figure 7: Some values of some functions.

@ Reasonable vs. Unreasonable Time |l

For comparison: the number of protons in the known universe has 79
digits; the number of nanoseconds since the Big Bang has 27 digits.

I/l Reasonable vs. Unreasonable Time |ll

T

10%

10 1 1
Number of
nanoseconds

since
| Big Bang

10%

10" Number of
nanoseconds

A trillion | in one day
A billion
A million
1000
100

10 F,

2 4 8 16 32 64 128 256 512 1024 2048

Figure 8: Growth rates of some functions

&

Reasonable vs. Unreasonable

Time IV

N
Function 20 40 60 100 300
- 5 1/2500 1/625 1/278 1/100 1/11
1 N millisecond millisecond millisecond millisecond millisecond
_:‘ NS 1/300 1/10 78/100 10 40.5
A~ second second second seconds minutes
1/1000 18.3 36.5 400 billion a 72-digit
= 2N second minutes years centuries number of
b= centuries
1 3.3 billion a 46-digit an 89-digit a 182-digit a 725-digit
s NN years number of number of number of number of
centuries centuries centuries centuries

Figure 9: Time consumption of hypothetical solutions to the monkey puzzle
problem (assuming one instruction per nanosecond)

@ Reasonable vs. Unreasonable Time V

» These facts lead to a fundamental classification of functions into
“good” and “bad” ones.

» The distinction to be made is between polynomial and
super-polynomial functions.

» For our purposes a polynomial function of N is one which is bounded
from above by N¥ for some fixed K (meaning, essentially, that it is
no greater in value than N¥ for all values of N from some point on).

» All others are super-polynomial.

Is it all real?

1. Computers are becoming faster by the week. Over the past 10 years
or so computer speed has increased roughly by a factor of 50.
Perhaps obtaining a practical solution to the problem is just a
question of awaiting an additional improvement in computer speed.

2. Doesn’t the fact that we have not found a better algorithm for this
problem indicate our incompetence at devising efficient algorithms?
Shouldn’t computer scientists be working at trying to improve the
situation rather than spending their time writing books about it?

3. Haven't people tried to look for an exponential-time lower bound on
the problem, so that we might have a proof that no reasonable
algorithm exists?

4. Maybe the whole issue is not worth the effort, as the monkey
puzzle problem is just one specific problem. It might be a colorful
one, but it certainly doesn’t look like a very important one.

Objection number 1

9

Maximal number of cards solvable in one hour:
Function | withtoday’s ! with computer ! with computer
computer 1 100 times faster 11000 times faster

T T

N A | 100xA | 1000xA
I I
| |

N? B ! 10x B I 316xB
1 1
I I

2 c | C+664 | C+997
1 1

Figure 10: Algorithmic improvements resulting from improvements in computer
speed

J&l} Objection number 4

» |t so happens that the monkey puzzle problem is not alone.

» There are other problems in the same boat. Moreover, the boat is
large, impressive, and many-sided.

» The monkey puzzle problem is just one of close to 1000 diverse
algorithmic problems, all of which exhibit precisely the same
phenomena.

» They all admit unreasonable, exponential-time solutions, but none of
them is known to admit reasonable ones.

Solutions?

1. Parallel computing?
2. Quantum Computing?

	Introduction
	Software
	Computer speed
	Improvements
	Complexity

