
The Efficiency of Algorithms
Information Technologies

Wojciech Myszka

Department of Mechanics, Materials and Biomedical Engineering

January 2023

1 Introduction

2 Software

3 Computer speed

4 Improvements

5 Complexity

Introduction

Let’s think about building a bridge I
When asked to construct a bridge over a river, it is easy to construct an
“incorrect” one:

1. The bridge might not be wide enough for the required lanes,
2. it might not be strong enough to carry rush-hour traffic, or
3. it might not reach the other side at all!

However, even if it is “correct,” in the sense that it fully satisfies the
operational requirements, not every candidate design for the bridge will
be acceptable:
▶ It is possible that the design calls for too much

▶ manpower, or
▶ too many materials or
▶ components.

▶ It might also require far too much time to bring to completion.

Let’s think about building a bridge II

In other words, although it will result in a good bridge, a design might be
too expensive

Software

Creating a software

1. The same problems as above
2. Incorrect algorithms are bad
3. Even a correct algorithm might leave much to be desired.

Example
Fibonacci series

f (0) = 1; f (1) = 1; f (n) = f (n − 2) + f (n − 1)

Recursive

n time
10 0,003s
20 0,003s
30 0,016s
40 1,265s
45 14,016s

Non-Recursive

n time
10 0,003s
20 0,003s
30 0,003s
40 0,003s
45 0,003s

Efficiency criteria

1. Complexity measures of memory space (or simply space)

and

2. time.

Space
The first of these is measured by
several things, including the number
of variables, and the number and
sizes of the data structures used in
executing the algorithm.

Time
The other is measured by the number
of elementary actions carried out by
the processor in such an execution.

Computer speed

Moore’s Law I

Moore’s law is the observation (made in 1965 by Gordon Moore from
Intel) that the number of transistors in a dense integrated circuit (IC)
doubles about every two years. Moore’s law is an observation and
projection of a historical trend. Rather than a law of physics linked to
gains from experience in production.

Moore’s Law II

Figure 1: By Max Roser, Hannah Ritchie, CC BY 4.0,

https://ourworldindata.org/uploads/2020/11/Transistor-Count-over-time.png

Moore’s Law III

Figure 2: 40 Years of Microprocessor Trend Data

https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/

48 Years of Microprocessor Trend Data

Battery capacity vs processor performance

Figure 3: Energy Harvesting for Structural Health Monitoring Sensor Networks

https://www.researchgate.net/publication/252239618_Energy_Harvesting_for_Structural_Health_Monitoring_Sensor_Networks

Historical cost of computer memory and storage

Problems

1. We are interested in finding the shortest route for a traveler who
wishes to visit each of, say, 200 cities. As of now, there is no
computer that can find the route in fewer than millions of years of
computing time!

2. No computer is capable of factoring (that is, finding the prime
numbers that divide) large integers, say, 300 digits long, in fewer
than millions of years.

Improvements

Ways for improving computation I
Transferring instructions from the inside to the outside of
loops
Assume that a teacher wants to normalize the list of grades, by giving the
student who scored best in the exam 100 points and upgrading the rest
accordingly. The algorithm is simple:
(1) compute the maximum score in MAX;
(2) multiply each score by 100 and divide it by MAX.
for I from 1 to N do:

L(I) ← L(I) × 100/MAX
this can be improved this way
FACTOR ← 100/MAX;
for I from 1 to N do:

L(I) ← L(I) × FACTOR

Ways for improving computation II

Searching for an element X in an unordered list
(say for a telephone number in a jumbled telephone book)
The standard algorithm calls for a simple loop, within which two tests are
carried out:
(1) “have we found X?” and
(2) “have we reached the end of the list?”

A positive answer to any one of these questions causes the algorithm to
terminate—successfully in the first case and unsuccessfully in the second.
How to improve this algorithm?

Complexity

Binary search I

▶ For concreteness, let us assume that the telephone book contains a
million names, that is, N is 1,000,000, and let us call them
X1,X2, ...,X1,000,000. We are searching for Y .

▶ A naive algorithm that searches for Y ’s telephone number is the one
previously described for an unsorted list: work through the list L one
name at a time, checking Y against the current name at each step,
and checking for the end of the list at the same time.

▶ The first comparison carried out by the new algorithm is not between
Y and the first or last name in L, but between Y and the middle
name (or, if the list is of even length, then the last name in the first
half of the list), namely X500,000.

Binary search II
▶ Assuming that the compared names turn out to be unequal, meaning

that we are not done yet, there are two possibilities:

(1) Y precedes X500,000 in alphabetic order, and
(2) X500,000 precedes Y .

▶ Since the list is sorted alphabetically, if

(1) is the case we know that if Y appears in the list at all it has to be in
the first half, and if

(2) is the case it must appear in the second half.

▶ Hence, we can restrict our successive search to the appropriate half
of the list.

▶ The next comparison will be between Y and the middle element of
that half:

Binary search III

▶ X250,000 in case (1) and
▶ X750,000 in case (2).

This process continues, reducing the length of the list, or in more general
terms, the size of the problem, by half at each step.

This procedure is called binary search, and it is really an application of
the divide-and-conquer paradigm discussed ealier

Binary search IV

P1: IOI

PE002-06drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:40

start

consider the
entire input list L

compare Y
to middle element

of considered
list

NOT
FOUND Y FOUND Y

consider first or second
half of considered list,

depending on the outcome
of the comparison

is
considered
list empty?

output
"not found"

output
"found"

stop

NO YES

stop

Figure 4: Block diagram

Binary search V

P1: IOI

PE002-06drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 17:40

 (1) Allen

 (2) Baley

 (3) Boyer

 (4) Casy

 (5) Davis

 (6) Davison

 (7) Glen

 (8) Greer

 (9) Haley

(10) Hanson

(11) Harrison

(12) Lister

(13) Mendel

(14) Morgenstern

(15) Patton

(16) Perkins

(17) Quinn

(18) Reed

(19) Schmidt

(20) Woolf

eureka !!

Casy > Boyer

Casy < Davis

Casy < Davison

Casy < Harrison

start

Length = 20

Number of comparisons = 5

Figure 5: Example

Binary search VI

Comparing the speed I
1. Very difficult problem
2. Execution time of the normalizing students scores (in both cases) is

proportional to the number of students (in the second case shorter,
but also proportional to number of students)

3. Time of the linear search algorithm depends on:
3.1 the list length, and
3.2 the data.

4. In the worst case (searched value not in the list) is proportional to
the list length.

5. Improved version (shorter), but in the worst case is proportional to
the list length.

6. Execution time of the binary search algorithm (in the worst case) is
proportional to the base two logarithm of the list length.

Comparing the speed II

the big-O notation
instead of telling that execution time is proportional to N we will use term

O(N)

This means that when the size of the problem increases, the (worst case)
time increases proportionally. So the binary search algorithm execution
time is in range of O(log2 N).
This means that when the list length doubles execution time increases
by 1 (time of one elementary search operation).

How much O(log2 N) is better than O(N)?

N log2 N

10 4
100 7

1000 10
a million 20
a billion 30

a billion billions 60

Time Analysis of Nested Loops
Sometimes we have something like this:

1. do the following N − 1 times:

. . .

1.1 do the following N − 1 times:

. . .
▶ The total time performance of this algorithm is on the order of

(N − 1)× (N − 1), which is N2 − 2N + 1.
▶ The N2 is called the dominant term of the expression, meaning that

the other parts, namely, the −2N and the +1, get “swallowed” by the
N2 when the big-O notation is used. Consequently, this algorithm is
an

O(N2),

or quadratic-time, algorithm.

Time Analysis of Recursion I
Let us now consider the min&max problem for finding the extremal
elements in a list L. The naive algorithm runs through the list iteratively,
updating two variables that hold the current extremal elements. It is
clearly linear. Here is the recursive routine, which was claimed to be
better:

subroutine find-min&max-of L:

1. if L consists of one element, then set MIN and MAX to it; if it
consists of two elements, then set MIN to the smaller of them and
MAX to the larger;

2. otherwise do the following:
2.1 split L into two halves, Lleft and Lright;
2.2 call find-min&max-of Lleft, placing returned values in MIN left and

MAX left;

Time Analysis of Recursion II
2.3 call find-min&max-of Lright, placing returned values in MIN right and

MAX right

2.4 set MIN to smaller of MIN left and MIN right;
2.5 set MAX to larger of MAX left and MAX right;

3. return with MIN and MAX .
▶ The iterative algorithm operates by carrying out two comparisons for

each element in the list, one with the current maximum and one with
the current minimum. Hence it yields a total comparison count of 2N .

▶ Let C (N) denote the (worst-case) number of comparisons required by
the recursive min&max routine on lists of length N .

1. If N is 2, precisely one comparison is carried out—the one implied by
line 1 of the routine; if N is 3, three comparisons are carried out, as
you can verify.

Time Analysis of Recursion III
2. If N is greater than 3, the comparisons carried out consist precisely of

two sets of comparisons for lists of length N/2, since there are two
recursive calls, and two additional comparisons—those appearing on
lines (2.4) and (2.5). (If N is odd, the lists are of length (N + 1)/2 and
(N − 1)/2.)

▶ We can write this:
▶ C (2) = 1
▶ C (N) = 2 × C (N/2) + 2

▶ And solve as:
C (N) = 3N/2 − 2

(in case where N is power of two)

Still O(N)!

The Towers of Hanoi Revisited

The time to solve this puzzle is

O(2N)

where N is number of rings.

The Monkey Puzzle Problem I

Figure 6: The Monkey Puzzle

▶ This puzzle involves nine square cards whose sides are imprinted
with the upper and lower halves of colored monkeys.

The Monkey Puzzle Problem II

▶ The objective is to arrange the cards in the form of a 3 by 3 square
such that halves match and colors are identical wherever edges meet.

▶ We shall assume that the cards are oriented, meaning that the edges
have fixed directions, “up,” “down,” “right,” and “left,” so that they are
not to be rotated.

▶ A naive solution to the problem is not too hard to come by.
▶ We need only observe that each input involves only finitely many

cards, and that there are only finitely many locations to fill with them.
▶ Hence, there are only finitely many different ways of arranging the

input cards into an M by M square.

The Monkey Puzzle Problem III

▶ On the first step, the first card can be placed on N = M ×M
locations, second car on N − 1 locations, and so on. In general we
have

N × (N − 1)× (N − 2)× · · · × 2 × 1 = N!

arrangements.

The time needed to solve this puzzle is

O(N!)

.

Reasonable vs. Unreasonable Time I

P1: GDZ

PE002-07drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:1

N 20 60 100 300 1000

100 300 500 1500 5000

86 354 665 2469 9966

400 3600 10,000 90,000 1 million
(7 digits)

8000 216,000 1 million
(7 digits)

27 million
(8 digits)

1 billion
(10 digits)

1,048,576 a 19-digit
number

a 31-digit
number

a 91-digit
number

a 302-digit
number

a 19-digit
number

an 82-digit
number

a 161-digit
number

a 623-digit
number

unimaginably
large

a 27-digit
number

5N

N × log2N

N2

N3

2N

N!

NN a 107-digit
number

a 201-digit
number

a 744-digit
number

unimaginably
large

Function
E

xp
on

en
ti

al
P

ol
yn

om
ia

l

Figure 7: Some values of some functions.

Reasonable vs. Unreasonable Time II

For comparison: the number of protons in the known universe has 79
digits; the number of nanoseconds since the Big Bang has 27 digits.

Reasonable vs. Unreasonable Time III

P1: GDZ

PE002-07drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:1

10

2 4 8 16 32 64 128 256 512 1024 2048

100
1000

A million

A billion

A trillion

1015

1020

Number of
nanoseconds
in one day

Number of
nanoseconds
since
Big Bang1025

1030

1035

1040

NN

N10

N5

N3

2N

5N

1.2N

Figure 8: Growth rates of some functions

Reasonable vs. Unreasonable Time IV

P1: GDZ

PE002-07drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:1

N

1/2500
millisecondN2

N5

2N

NN

1/625
millisecond

1/10
second

18.3
minutes

1/278
millisecond

1/100
millisecond

1/11
millisecond

1/300
second

78/100
second

10
seconds

40.5
minutes

1/1000
second

36.5
years

400 billion
centuries

a 72-digit
number of
centuries

a 46-digit
number of
centuries

3.3 billion
years

an 89-digit
number of
centuries

a 182-digit
number of
centuries

a 725-digit
number of
centuries

20 40 60 100 300Function
E

xp
on

en
ti

al
P

ol
yn

om
ia

l

Figure 9: Time consumption of hypothetical solutions to the monkey puzzle
problem (assuming one instruction per nanosecond)

Reasonable vs. Unreasonable Time V

▶ These facts lead to a fundamental classification of functions into
“good” and “bad” ones.

▶ The distinction to be made is between polynomial and
super-polynomial functions.

▶ For our purposes a polynomial function of N is one which is bounded
from above by NK for some fixed K (meaning, essentially, that it is
no greater in value than NK for all values of N from some point on).

▶ All others are super-polynomial.

Is it all real?
1. Computers are becoming faster by the week. Over the past 10 years

or so computer speed has increased roughly by a factor of 50.
Perhaps obtaining a practical solution to the problem is just a
question of awaiting an additional improvement in computer speed.

2. Doesn’t the fact that we have not found a better algorithm for this
problem indicate our incompetence at devising efficient algorithms?
Shouldn’t computer scientists be working at trying to improve the
situation rather than spending their time writing books about it?

3. Haven’t people tried to look for an exponential-time lower bound on
the problem, so that we might have a proof that no reasonable
algorithm exists?

4. Maybe the whole issue is not worth the effort, as the monkey
puzzle problem is just one specific problem. It might be a colorful
one, but it certainly doesn’t look like a very important one.

Objection number 1

P1: GDZ

PE002-07drv PE002-Harel PE002-Harel-v4.cls March 17, 2004 18:1

Function

N

N2

2N

A

B

C

100 × A

10 × B

C + 6.64

1000 × A

31.6 × B

C + 9.97

with today’s
computer

with computer
100 times faster

with computer
1000 times faster

Maximal number of cards solvable in one hour:

Figure 10: Algorithmic improvements resulting from improvements in computer
speed

Objection number 4

▶ It so happens that the monkey puzzle problem is not alone.
▶ There are other problems in the same boat. Moreover, the boat is

large, impressive, and many-sided.
▶ The monkey puzzle problem is just one of close to 1000 diverse

algorithmic problems, all of which exhibit precisely the same
phenomena.

▶ They all admit unreasonable, exponential-time solutions, but none of
them is known to admit reasonable ones.

Solutions?

1. Parallel computing?
2. Quantum Computing?

	Introduction
	Software
	Computer speed
	Improvements
	Complexity

